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ABSTRACT 16 

As the global population ages, it is crucial to understand sensorimotor compensation 17 

mechanisms. These mechanisms are thought to enable older adults to remain in good physical 18 

health, but despite important research efforts, they remain essentially chimeras. A major 19 

problem with their identification is the ambiguous interpretation of age-related alterations. 20 

Whether a change reflects deterioration or compensation is difficult to determine. Here we 21 

compared the electromyographic and kinematic patterns of different motor tasks in younger (n 22 

= 20; mean age = 23.6 years) and older adults (n = 24; mean age = 72 years). Building on the 23 

knowledge that humans take advantage of gravity effects to minimize their muscle effort, we 24 

probed the ability of younger and older adults to plan energetically efficient movement during 25 

arm-only and whole-body movements. In line with previous studies and compared to younger 26 

adults, muscle activation patterns revealed that older adults used a less efficient movement 27 

strategy during whole-body movement tasks. We found that this age-related alteration was task-28 

specific. It did not affect arm movements, thereby supporting the hypothesis that healthy older 29 

adults maintain the ability to plan energetically efficient movements. More importantly, we 30 

found that the reduced whole-body movement efficiency was correlated with kinematic 31 

measures of balance control (i.e., the center-of-mass movement amplitude and speed). The 32 

more efficient the movement strategy, the more challenging the balance. Overall, these results 33 

suggest that reduced movement efficiency in healthy older adults does not reflect a deterioration 34 

but rather a compensation process that adapts movement strategy to the task specificities. 35 

When balance is at stake, healthy older adults prefer stability to energy efficiency. 36 

 37 
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Introduction 40 

Living old and healthy, also known as successful aging, is a blessing but is nonetheless associated with 41 

deterioration in various organs and functions. In terms of motor deterioration, aging is associated with loss of 42 

muscle mass (Larsson et al., 2019), sensory receptor degradation (Goble et al., 2009; Zalewski, 2015; Saftari & 43 

Kwon, 2018), and cortical atrophy (Hoffstaedter et al., 2015; Salat, 2004). Functionally, this translates into a 44 

decline in muscle strength and power (Larsson et al., 2019; Pousson et al., 2001) and movements that tend to 45 

become slower and more variable (Buckles, 1993; Darling et al., 1989). If the deteriorations are too great, they 46 

lead to reductions in quality of life and, ultimately, to dependency. Importantly, successful aging is thought to 47 

depend on compensatory processes that offset deteriorations (Baltes & Baltes, 1990; Martin et al., 2015; Zhang 48 

& Radhakrishnan, 2018). Even the most elementary concept of health includes compensatory processes at its 49 

core. The World Health Organization defined health as “a state of complete physical, mental, and social well-50 

being and not merely the absence of disease or infirmity” (1948). Scientists and clinicians later redefined it 51 

even more generally as “the ability to adapt and to self-manage” (Huber et al., 2011; The Lancet, 2009). So, 52 

despite the normal deterioration associated with age, compensatory processes enable older adults to adapt 53 

and remain in good health (i.e., aging successfully) and thus continue to live comfortably. 54 

In a world with a rapidly aging population (Rudnicka et al., 2020), it is essential to understand the 55 

compensatory processes that enable older people to remain healthy. This represents a critical step toward 56 

implementing interventions aimed at detecting, preventing, or reducing frailty and later dependency (for 57 

reviews, see Barulli & Stern, 2013; Ouwehand et al., 2007; Poirier et al., 2021; Zhang & Radhakrishnan, 2018). 58 

Compensation has long been theorized and could be defined as "a response to loss in means (resources) used 59 

to maintain success or desired levels of functioning (outcomes)” (Baltes, 1997). In contexts of severe 60 

deterioration, the most basic form of compensation is the use of external aids (e.g., a crutch for walking). Such 61 

compensations are observed in frail or dependent older adults, i.e., when deterioration is severe. When 62 

considering more subtle deterioration levels, identifying compensation becomes challenging. In these cases, 63 

compensatory processes enable older adults to maintain behavioral performances similar to those of younger 64 

adults, at least for the less demanding tasks of daily life (Barulli & Stern, 2013). These compensatory processes 65 

are the result of neurophysiological and behavioral adaptations that are more difficult to observe with the 66 

naked eye. Almost thirty years ago, in his famous theory of selection, optimization, and compensation, Paul 67 

Baltes and his colleagues already noted this difficulty (Baltes, 1997; Baltes & Baltes, 1990). 68 

Since then, countless studies have explored compensatory processes using powerful tools and analyses 69 

(for recent reviews, see Bunzeck et al., 2024; Fettrow et al., 2021; Poirier et al., 2021). These studies have 70 

considerably advanced the description and understanding of age-related neural alterations. Nevertheless, 71 

behavioral compensatory processes and their underlying neural mechanisms remain essentially chimeras. 72 

Building on the theoretical work of Krakauer et al. (2017), we recently proposed that an important reason for 73 

this failure may be that studies focusing on age-related neural alterations have used overly crude behavioral 74 

paradigms (Poirier et al., 2021). Typically, these studies have used broad measures such as muscle strength, 75 

reaction time, or movement time. Although these measures and paradigms tested important functional motor 76 

performances, they measured the combination of several behavioral strategies and subtending neural 77 

mechanisms. Since these strategies and mechanisms likely showed different levels of age-related 78 

deterioration, previous studies have likely mixed deterioration and compensation processes (Poirier et al., 79 

2021). Identifying neural compensation requires linking the brain to behavior, and to establish a precise link, 80 

we need fine behavioral measures and experimental paradigms that allow approaching the constituent 81 

processes of a behavior (Krakauer et al., 2017; Pereira et al., 2020; Urai et al., 2022). It is therefore essential to 82 

first develop detailed knowledge of age-related compensation at the behavioral level.  83 

We sought to fill this gap by building upon the results of two different bodies of literature. On one hand, 84 

several studies have demonstrated that the brain plans efficient arm movements that take advantage of the 85 

mechanical effects of gravity to save muscle effort, thus to save energy (Berret et al., 2008; Crevecoeur et al., 86 

2009; Gaveau et al., 2014, 2016, 2021; Gaveau & Papaxanthis, 2011; Gueugneau et al., 2023; for a review, see 87 

White et al., 2020). Importantly, recent work demonstrates that this ability is maintained and maybe even 88 

upregulated in older adults (Healy et al., 2023; Huang & Ahmed, 2014; Poirier et al., 2020; Summerside et al., 89 

2024). On the other hand, studies probing the control of movements performed with the entire body have 90 

reported a different conclusion. Kinematic results suggest that older adults plan whole-body movements that 91 

are less energy-efficient than younger adults (Casteran et al., 2018; Paizis et al., 2008). This is unexpected 92 



because such movements require more energy expense in older adults than in younger adults (Hortobagyi et 93 

al., 2003, 2011; Julius et al., 2012; VanSwearingen & Studenski, 2014). Since the ability to plan efficient 94 

movements is maintained in older adults, as testified by arm movements studies, one may speculate that this 95 

decreased efficiency reflects an age-related compensation that changes movement strategy (i.e., an age-96 

related motor adaptation process). However, because this literature used very different experimental 97 

paradigms and measurements, this conclusion is highly speculative. More importantly, the results of numerous 98 

other studies could also interpret the decreased efficiency observed in whole-body movements as a 99 

deterioration of the ability to produce efficient motor patterns (Goodpaster et al., 2006; Henry & Baudry, 2019; 100 

Quinlan et al., 2018; Vernazza-Martin et al., 2008). Here we test the hypothesis that age-related alterations in 101 

movement efficiency correspond to an adaptation process, i.e., a change in movement strategy that 102 

compensates for other deteriorated sensorimotor components. To overcome the aforementioned limitations, 103 

using a specific muscle activation pattern analysis that has proven relevant to focusing on this precise process 104 

of energetic efficiency (Chambellant et al., 2023; Gaveau et al., 2021; Poirier et al., 2022, 2024; Thomas et al., 105 

2023), we compare older to younger adults on tasks involving either arm or whole-body movements. We then 106 

test whether energy efficiency is correlated to balance control. 107 

Methods 108 

Participants 109 

Because we had no prior data to calculate the ideal sample size, we included as many participants as 110 

possible over a fixed recruitment period. Twenty younger adults (23.6 ± 2.1 y.o.) and twenty-four older adults 111 

(72 ± 5.3 y.o.) were included in the study after giving their oral informed consent. Participants had normal or 112 

corrected-to-normal vision and did not present any neurological or muscular disorders. The laterality index of 113 

each participant was superior to 60 (Edinburgh Handedness Inventory, Oldfield 1971), indicating that all 114 

participants were right-handed. The study was carried out following legal requirements and international 115 

norms (Declaration of Helsinki, 1964) and approved by the French National Ethics Committee (2019-A01558-116 

49). Each participant was included in the study by a medical doctor. 117 

Experimental Protocol 118 

All participants performed four tasks in a randomized order. These tasks either required moving the arm 119 

only (Figure 1A) or the whole-body (Figure 1B-D). Whole-body movements consisted of seat-to-stand/back-to-120 

sit (STS/BTS, Figure 1B), whole-body reaching toward near targets (WBR D1, Figure 1C), and whole-body 121 

reaching toward far targets (WBR D2, Figure 1D). The arm task was selected because it is the reference task 122 

that has been studied to demonstrate how muscle patterns take advantage of gravity effects to save energy. 123 

The whole-body tasks were selected because they include an equilibrium constraint, are movements of the 124 



daily life, and they have been investigated in previous studies (Casteran et al., 2018; Jeon et al., 2021; 125 

Manckoundia et al., 2006; Millington et al., 1992; Mourey et al., 1998; Paizis et al., 2008).  126 

ARM task 127 

Over a variety of arm movement tasks, including single or muti-degree of freedom pointing movements, 128 

drawing movement, reach to grasp movements, or arm movements that transport a hand-grasped object, the 129 

results consensually support an optimization principle that shapes arm motor patterns to take advantage of 130 

gravity effects in saving energy (Crevecoeur et al., 2009; Gaveau et al., 2011; Gaveau & Papaxanthis, 2011; Le 131 

Seac’h & McIntyre, 2007; Paizis et al., 2008; Papaxanthis et al., 1998, 2005; Yamamoto & Kushiro, 2014a). Thus, 132 

to make the protocol doable in a single session with each participant, we only included one arm task in the 133 

present experiment. This task was similar to a task used in several previous studies probing human movement 134 

adaptation to the gravity environment (Gaveau et al., 2014, 2016, 2021; Gaveau & Papaxanthis, 2011; Gentili 135 

et al., 2007; Hondzinski et al., 2016; Le Seac’h & McIntyre, 2007; Poirier et al., 2020, 2022; Yamamoto & 136 

Kushiro, 2014a). Using their right arm, participants carried out single-degree-of-freedom vertical arm 137 

flexion/extension movements around the shoulder joint. Two blocks of arm movements were performed in a 138 

randomized order. One block consisted of six slow movements, and one block consisted of twelve fast 139 

movements. Two targets (diameter of 3 cm) were placed in front of the participant’s right shoulder (in a 140 

A B

C D

Figure 1. Illustration of the four tasks. Each panel illustrates the extreme body positions between which participants performed 
their movements. Each position was alternatively the starting or ending target of a movement, depending on movement 
direction. A: Single degree of freedom arm movements flexion/extension around the shoulder joint (flexion/extension). 
Participants performed upward and downward arm movements. B: Seat-to-stand/Back-to-sit movements. Participants 
performed vertical multi-articular whole-body movements to either stand up from the stool (upward movement) or sit on it 
(downward movement). C: Whole-body reaching task toward a near target. Participants performed vertical multi-articular 
whole-body movements to either reach towards targets that were located nearby the floor (downward movement) or to bounce 
back from this position toward a resting vertical standing position (upward movement). D: same as C but with targets that were 
placed farther away on the antero-posterior axis. 



parasagittal plane) at a distance corresponding to the length of their fully extended arm plus two centimeters. 141 

The prescribed movement amplitude between the two targets was 45°, corresponding to 112.5° (upward 142 

target, 22.5° above horizontal) and 67.5° (downward target, 22.5° below horizontal) shoulder 143 

flexion/extension.  144 

STS/BTS task 145 

This task was similar to those of previous studies (Jeon et al., 2021; Manckoundia et al., 2006; Millington 146 

et al., 1992; Mourey et al., 1998). Participants were seated on an armless stool whose height was adjusted to 147 

correspond to 30% of the participant’s height. The hands were positioned on the hips, and the back was 148 

instructed to be maintained about vertical. Participants were asked to stand up from the stool, make a short 149 

pause (about 2s), and then sit back on the stool. Similarly to arm movements, participants executed two blocks 150 

of movements in a randomized order. One block consisted of six slow movements, and the other consisted of 151 

12 fast movements. 152 

WBR task 153 

This task was similar to those of Casteran et al. (2018) and Paizis et al. (2008). Starting from an upright 154 

position, we asked participants to perform whole body reaching movements (WBR) toward two targets nearby 155 

the floor with their two index fingers (10% of their heights above the floor). The two targets (4 × 2 cm) were 156 

spaced by 0.5 m on a medio-lateral axis and centered on the participant’s sagittal axis. They were placed in 157 

front of the participant at two different distances, corresponding to 15% (D1) or 30% (D2) of their height on 158 

the antero-posterior axis. Distances were measured from the participant’s big toe. Similarly to the previous 159 

two tasks, for each distance and in a randomized order, participants executed two blocks of trials performed 160 

at two different speeds. One block consisted of six slow movements and the other twelve fast movements 161 

(total of four blocks: two speeds × two distances). 162 

Trial organization 163 

       The organization of a trial was similar for all tasks. It was carried out as follows: i) the experimenter 164 

indicated to get ready; ii) the participant adopted the requested initial position; iii) after a brief delay (∼1 165 

second), the experimenter verbally informed the participant that she/he was free to reach the requested final 166 

position whenever she or he wanted. Note that reaction time was not emphasized in our experiment; iv) the 167 

participant was requested to maintain the final position for a brief period (about 1 second); v) the 168 

experimenter instructed to move back to the starting position (reversed movement) whenever desired; vi) 169 

lastly, the participant was asked to relax. A short rest period (∼20 s) separated trials to prevent muscle fatigue. 170 

Additionally, participants were free to rest as long as they wanted between blocks. Participants were allowed 171 

to perform a few practice trials (∼3 trials) before each block. Low-speed and high-speed blocks were similar 172 

except that the instructions were to perform the movements in roughly 5 seconds or as fast as possible, 173 

respectively. 174 

Data Collection 175 

Kinematics 176 

We used the Plug-In Gait full body model (Vicon, Oxford Metrics, UK) following their recommendations to 177 

place the 39 reflective markers on the participant’s head (temples and backs of the head to form a rigid plan 178 

with the head), back (C7, T10 and on the right scapula), torso (jugular notch where the clavicles meet the 179 

sternum and on the xiphoid of the sternum), shoulders (acromion), arms (upper lateral 1/3 for the left arm, 180 

and 2/3 for the right arm), elbows (lateral epicondyle), forearms (lower lateral 1/3 for the left forearm, and 181 

2/3 for the right forearm), wrists (both cubitus styloid processes), hands (middle of the proximal knuckle of the 182 

index), pelvis (anterior and posterior superior iliac spine), thighs (upper lateral 1/3 for the left leg, and 2/3 for 183 

the right leg), knees (lateral side of the flexion-extension axis), calves (upper lateral 1/3 for the left calf, and 184 

2/3 for the right calf), ankles (lateral malleolus), and feet (second metatarsal head and heel). The markers on 185 

the scapula, on the arms, on the forearms, on the thighs, and on the calves have been deliberately placed 186 

asymmetrically so that the model can best dissociate the right and left sides; these markers are not used for 187 

the analyses presented in this manuscript. 188 



We recorded the position of all markers with an optoelectronic motion capture system (Vicon system, 189 

Oxford Metrics, UK; 18 cameras) at a sampling frequency of 200 Hz. The spatial variable error of the system 190 

was less than 0.5 mm. 191 

EMG 192 

We placed sixteen bipolar surface electrodes (Cosmed, pico EMG, sampling frequency: 1000Hz) on the 193 

anterior (AD) and posterior (PD) heads of the deltoid, vastus lateralis (VL), biceps femoris (BF), spinal erectors 194 

on L1 (ESL1) and on T7 (EST7), the soleus (SOL), and on the tibialis anterior (TA) to record EMG activity. 195 

Electrodes were placed bilaterally. The location of each electrode was determined following the 196 

recommendations from Barbero et al. (2012). 197 

The Giganet unit (Vicon, Oxford Metrics, UK) synchronously recorded kinematic and EMG data. 198 

Data Analysis 199 

We processed kinematic and EMG data using custom programs written in Matlab (Mathworks, Natick, MA). 200 

Data processing was inspired by previous studies (Gaveau et al., 2021; Poirier et al., 2022) and was similar for 201 

all tasks. 202 

Kinematics analysis  203 

First, we filtered position using a third-order low-pass Butterworth filter (5 Hz cut-off, zerophase distortion, 204 

“butter” and “filtfilt” functions). We then computed the amplitude of the movement using steady phases 205 

(200ms for fast movements and 500ms for slow movements) before and after the movement, using the marker 206 

of the right shoulder (for whole-body movements, see Figure 2) or the right finger (for arm movements). The 207 

amplitude was computed on the Z axis for fast movements and on X, Y, and Z axes for slow movements. For 208 

slow movements, we used 3D position to minimize detection error on signals that were more variable than 209 

those obtained during fast movements. Last, we automatically defined movement onset and offset as the 210 

moments when the displacement rose above or felt below a threshold corresponding to 5% and 95% of the 211 

total movement amplitude, respectively. 212 

On behalf of using the kinematics to define the start and end of movement, we analyzed the displacement 213 

of the Center of Mass (CoM) in three dimensions to understand how equilibrium was maintained during the 214 

whole-body tasks. This was done to reproduce the work of Casteran et al., (2018) and Paizis et al., (2008), but 215 
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also, and more importantly, to perform a simple analysis testing whether our main criterion, quantified via 216 

electromyographic activity, is linked to a simple, interpretable kinematic change. Our analysis utilized a seven-217 

segment mathematical model incorporating rigid segments such as the Trunk, Thigh, Shank, Foot, Upper arm, 218 

Forearm, and Hand. We used anthropometric data from Winter (2009), as performed by previous studies 219 

(Berret et al., 2009; Stapley et al., 1999). Our choice of movement segmentation for this specific kinematic 220 

analysis has been guided by the works of Casteran et al., (2018) and Paizis et al., (2008). We determined 221 

movement onset and offset on velocity profiles, using a threshold of 5% of the peak velocity. We further 222 

explored the kinematics of the whole-body tasks using two simple parameters: i) the total displacement of the 223 

center of mass, calculated as the distance between the start and end positions and normalized by the subject's 224 

height; and ii) the peak velocity of the center of mass. We focused on downard movements, as these are the 225 

ones that have been studied and present the greatest challenge to balance. The specific process to compute 226 

criteria used by previous studies (Casteran et al., 2018 and Paizis et al., 2008) is detailed and available in 227 

Supplementary Figure 1. 228 

EMG analysis 229 

Below, following methodologies developed by several previous studies, we detail how we obtain EMG 230 

marker. 231 

Pre-processing. EMG signals were first rectified and filtered using a bandpass third-order Butterworth filter 232 

(bandpass 30-300 Hz, zero-phase distortion, “butter” and “filtfilt” functions) followed by a low-pass third-order 233 

Butterworth filter (low-pass frequency: 5 Hz) to highlight important features of muscular activities. Signals 234 

were integrated using a 100ms sliding window using trapezoidal numerical integration from Matlab 235 

(Mathworks, Natick, MA) and cut off. For fast movements, EMG signals were cut off from 240ms before 236 

movement onset to 90ms after movement offset. For slow movements, EMG signals cut off from 75ms before 237 

movement onset to 75ms after movement offset. These timing values were obtained from preliminary 238 

analyses detecting EMG activity start and stop before and after all movements. The result is the average of all 239 

participants. Importantly, those values were kept constant for all participants and, thus, should not bias group 240 

comparisons. 241 

Phasic/tonic separation. We then computed the phasic component of each EMG signal using a well-known 242 

subtraction procedure that has mostly been used to study arm movements (Buneo et al., 1994; d’Avella et al., 243 

2006, 2008; Flanders et al., 1994; Flanders & Herrmann, 1992; Gaveau et al., 2021). This processing allows 244 

quantifying how much the central nervous system takes advantage of the gravity torque when moving the 245 

body in the gravity environment (Gaveau et al., 2021; Poirier et al., 2022, 2024). Here, we customized this 246 

procedure to investigate whole body movements since movements are not one-degree-of-freedom 247 

movements. First, the tonic signal was obtained from the six slow movements. For that purpose, the cut 248 

movements (as described earlier with delays) were normalized in duration to be finally averaged together in 249 

one tonic signal. Second, to improve signal to noise ratio, EMG traces of fast movements were ordered 250 

according to movement mean velocity and averaged across two trials (from the two slowest to the two fastest 251 

movements). This resulted in six EMG traces to be analyzed for each block. Each set of two traces was 252 

normalized in duration (corresponding to the mean duration of the two traces) before averaging. Third, the 253 

phasic component was obtained by subtracting the tonic EMG from the EMG trace of each pair of fast 254 



movements. Finally, to set the data of all participants on a common scale, phasic activity was normalized by 255 

the maximal EMG value recorded in each task for each participant. 256 

Muscles selection. It was recently shown that the phasic EMG activity of antigravity muscles, those that 257 

pull against the gravity vector, consistently exhibits negative epochs (Chambellant et al., 2024; Gaveau et al., 258 

2021; Poirier et al., 2022; Thomas et al., 2023) when the arm acceleration sign is coherent with the gravity 259 

acceleration sign (i.e., in the acceleration phase of downward movement and in the deceleration phase of 260 

upward movements). This observation likely reflects an optimal predictive motor strategy where muscle 261 

activity is decreased when gravity assists arm movements, thereby saving energy (Gaveau et al., 2021). In the 262 

present study, the antigravity muscles are: i) the Anterior Deltoïd (DA), flexing the shoulder joint; ii) the Vastus 263 

Lateralis (VL), extending the knee joint; iii) the Erector Spinae L1 (ESL1), extending the rachis; iv) the Erector 264 

Spinae T7 (EST7), extending the rachis; v) the Soleus (SOL), flexing the ankle in the plantar direction. Because 265 

the Erector Spinae T7 and the Soleus muscles did not play a strong focal role but a rather postural one in the 266 

present tasks, we focused our analyses on the remaining three muscles (DA, VL, and ESL1). Probing the 267 

Figure 3: Illustration of the calculation method to obtain phasic EMG components. Electromyographic signals (mV) are 
presented as a function of time. Pattern duration and amplitude are normalized (see methods). A: Six integrated Vastus Lateralis 
EMG signals during fast BTS movements of a typical participant (BTS: Back-to-seat); B: Six integrated Vastus Lateralis EMG signals 
recorded during slow BTS movements of a typical participant. These signals represent the tonic component. TA: Tonic Area 
integrated on the tonic signal between the negativity onset and offset; C: Integrated phasic EMG component computed using 
the six fast (panel A) and slow movements (panel B). The phasic is calculated by subtracting the mean of the slow acquisitions 
from the fast acquisitions (Phasic = Fast – Tonic). T: the duration of the negative epoch normalized by movement duration and 
NA: the Negative Area integrated on the phasic signal between negativity onset and offset. 
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activation of a postural muscle, per definition, is not appropriate to test whether the nervous system takes 268 

advantage of gravity effects to move our body limbs. Compared to other joints (e.g., hips and knees), the ankle 269 

and upper rachis were only minimally mobilized in the tasks we investigated here (see stick diagrams in Figure 270 

1). Including these muscles in our analyses would thus add noise to our dependent variables and likely impede 271 

our ability to test our hypothesis. Therefore, we focused on DA during arm movements and on VL and ESL1 272 

during movement of the entire body. 273 

Quantifying negativity. We defined negative epochs as an interval where the phasic EMG signal was 274 

inferior to zero minus three times the standard deviation of the stable phase preceding the movement, and 275 

this for at least 40ms. This duration has been chosen after preliminary tests to avoid detecting false-positives. 276 

We kept it constant for all analyses. We used this value as a threshold to automatically detect negativity onset 277 

and offset. On each negativity phase, we computed: i) a negativity index, defined as T x NA / TA, with NA the 278 

Negative Area integrated on the phasic signal between negativity onset and offset, TA the Tonic Area 279 

integrated on the tonic signal between the negativity onset and offset, and T the duration of the negative 280 

epoch normalized by movement duration (see Figure 3). This value is always negative or null. The lower the 281 

value, the greater the efficiency; ii) negativity occurrence, defined as the number of trials where a negative 282 

epoch was automatically detected, divided by the total number of trials in the condition; iii) negativity 283 

duration, defined as the duration of the negative epoch normalized by movement duration; iv) negativity 284 

amplitude, defined as the minimal 𝑃ℎ𝑎𝑠𝑖𝑐 𝑣𝑎𝑙𝑢𝑒 / 𝑇𝑜𝑛𝑖𝑐 𝑉𝑎𝑙𝑢𝑒 × 100 during the negative period. A value of -285 

100 indicates that the muscle is completely relaxed and a value of 0 indicates that the muscle exactly 286 

compensated the gravity torque.  287 

As is often the case with EMG recordings, some of the EMG signals exhibited aberrant values. Those signals 288 

are usually due to poor contact between the electrodes and the skin. Supplementary Table 1 summarizes the 289 

issues encountered with all electrodes and participants.   290 

Machine Learning  291 

We used custom Matlab (Mathworks, Natick, MA) scripts to perform all machine learning analyses. The 292 

ESL1G was not considered for these analyses because the electrode was defective for several younger 293 

participants (see Supplementary Table 1). 294 

The input data was the phasic EMG signals of the 15 muscles taken individually or the whole set at once. 295 

These vectors were fed to the algorithms using binary classification setups, where the algorithm learned to 296 

distinguish between the EMGs of the two groups. To ensure robustness  of the results, we employed a five-297 

fold cross-validation method. This involved splitting the whole dataset into five sets while ensuring equal 298 

representation of both directions in each set. The algorithm was trained on four of those sets before being 299 

evaluated on the fifth set (containing data unknown to the trained algorithm). This operation was repeated 300 

five times, so each set was tested once. Cross-validation allowed computing the average accuracy and its 301 

variance across the testing sets, thereby providing a reliable estimate of the accuracy obtained by the 302 

algorithm. Finally, we could compare the accuracy of the algorithm for each muscle.  303 

 304 

Univariate Statistics 305 

After an initial kinematic analysis (detailed in the results section), we observed a difference in movement 306 

duration between younger and older adults (conducting a repeated measure analyses of variance with a 307 

between factor Age with two levels: Young/Older and a within factor Task-type with two levels: Arm/Whole-308 

body movements). Because movement duration is known to influence phasic EMG negativity (Poirier et al., 309 

2023), we added movement duration as a covariate. We performed repeated measure analyses of covariance 310 

(ANCOVA) using JASP software. Two ANCOVA analyses were carried out. We first used a mixed ANCOVA with 311 

a between factor Age (two levels: Young/Older) and a within factor Task-type (two levels: Arm/Whole-body 312 

movements) to test whether age effects on movement control depended on the type of task being performed. 313 

Second, to detail the age differences observed during movements of the entire body, we used a mixed ANCOVA 314 

with a between factor Age (two levels: Young/Older) and a within factor Whole-Body-Tasks (three levels: 315 

STS_BTS/WBR D1/WBR D2). In all cases, the significance level was set to 0.05.  316 

To test for a possible beneficial effect (i.e., compensation) of the EMG alterations that we observed with 317 

aging, we performed a kinematic analysis of the center of mass. We then used independent Student-tests and 318 

Pearson correlation coefficients to study potential differences between groups and associations between 319 

variables.  320 



Results 321 

Movement duration of fast movements varied between tasks and was slightly reduced in younger 322 

compared to older participants (see Figure 4 and Supplementary Table 2 for detailed results). Overall, older 323 

adults were 3.5% slower than younger adults. A repeated measures ANOVA revealed that this age-difference 324 

was significant (F(1,42)= 14.5, P=4.58E-05, ƞ2=0.256). For this reason, we used movement duration as a 325 

covariate in the following statistical analyses. Nevertheless, as revealed by Figure 4, it is important to note that 326 

an important number of older adults moved with durations that were similar to those of younger adults. 327 

      A body of computational studies has demonstrated that human arm movements take advantage of gravity 328 

effects to save energy (Berret et al., 2008; Crevecoeur et al., 2009; Gaveau et al., 2011, 2014, 2016, 2021). 329 

Most of these studies used mathematical models that minimized the absolute work of muscle force to produce 330 

the arm displacement (Berret et al., 2008; Gaveau et al., 2011, 2014, 2016, 2021). More specifically, the study 331 

from Berret et al. (2008) formally demonstrated that this muscle work cost, and associated behavior, 332 

corresponded to an energetic-like optimum. Because previous studies have shown that the amplitude of 333 

kinematic and electromygographic markers directly relates to energetic efficiency (Gaveau et al., 2016; Poirier 334 

et al., 2022), here we compare the amplitude of an EMG marker between younger and older adults. If the EMG 335 

marker increases, this means that energetic efficiency increases – i.e., the minimization process is upregulated 336 

– and thus muscle work decreases. If the EMG marker decreases, this means that energetic efficiency 337 

decreases – i.e., the minimization process is downregulated – and thus muscle work increases.  338 

Figure 5 displays average phasic EMG profiles for each muscle, direction, and task. As recently reported, 339 

phasic EMG signals of arm movements show negative phases during the deceleration of upward and the 340 

acceleration of downward arm movements, i.e., where gravity torque helps generate the arm's motion 341 

(Gaveau et al., 2021; Poirier et al., 2022, 2024). Previous works demonstrated that this negativity is not erratic 342 

but systematic and indicate that muscles contract less than necessary to compensate for gravity effects. It is 343 

therefore especially prominent on antigravity muscles and reveals that the central nervous system (CNS) 344 

exploits gravity effects to produce efficient movements, i.e., motor patterns that save unnecessary muscle 345 

work. Here, we extend this result to movements performed with the entire body. Indeed, for STS/BTS and WBR 346 

movements, Figure 5B-D unveils phasic EMG negativity during the deceleration of upward movements and the 347 

acceleration of downward movements, i.e., when gravity can help produce the motion. This first qualitative 348 

Figure 4. Mean ± SD movement durations (s) for fast movements performed in all tasks and both groups (STS: Seat-to-stand, 
BTS: Back-to-seat, WBR: Whole-body-reaching, D1: Short distance=15% of the height of the subject, and D2: Long distance=30% 
of the height of the subject). Each point corresponds to the average duration of the trials of one participant. The blue points 
represent the young participants, and the green points correspond to the older participants. 
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Figure 5:  Mean (±SE) integrated 
phasic EMGs recorded for both 
groups (n = 20 for younger and n = 24 
for older) during arm (panel A), Seat-
to-stand/Back-to-seat (panel B), and 
whole body reaching movements 
(panel C for short distance D1 and 
panel D for long distance D2). Blue 
traces present EMGs recorded for 
younger participants, while green 
traces present EMGs recorded for 
older participants. The dotted line 
divides the movement in two: the 
first half is acceleration and the 
second is deceleration. (DA: Anterior 
deltoid, DP: Posterior deltoid, VL: 
Vastus Lateralis, BF: Biceps Femoris, 
ESL1: Erector Spinae in L1, EST7: 
Erector Spinae in T7, TA: Tibialis 
Anterior, SOL: Soleus). 

result demonstrates that movements that are performed with the entire body, similarly to more focal arm 349 

movements, exploit gravity effects to save unnecessary muscle work (Gaveau et al., 2021). More importantly, 350 

the present results qualitatively reveal that older adults also use such an efficient strategy, both when moving 351 

their arm and their entire body.  352 

Main analysis 353 

Following our primary hypothesis, we first analyzed a single metric quantifying phasic EMG negativity on 354 

an average muscle activation pattern (vastus lateralis and erector spinae in L1 were averaged for whole-body 355 

tasks and deltoid anterior was used for arm tasks), namely the negative area of phasic EMG patterns (see 356 

methods and Poirier et al., 2022, 2024). The bigger the negativity index, the more efficient the muscle 357 

contractions, in the sense that gravity effects were maximally exploited to save energy (Gaveau et al., 2021). 358 
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Figure 6 displays the results of this ANCOVA analysis (Age × Task-Type), revealing a significant interaction 359 

between age and task factors (F(1,42)= 5.48, P=2.44E-02, ƞ2=0.120) but no Age or Tasks effect (for detailed 360 

statistical results, please see Supplementary Table 3). This result demonstrates that age differently alters 361 

motor strategies for arm movements vs whole-body movements. Older adults used gravity effects to a similar 362 

extent as younger ones when performing arm movements (older adults, mean ± SD: -10.7 ± 5.6, 95% CI: [-8.4;-363 

13.0]; younger adults, -11.4 ± 3.6, [-9.8;-13.0]), but to a lesser extent when performing whole-body movements 364 

(older adults, -9.7 ± 3.2, [-8.0;-11.5]; younger adults, -15.6 ± 3.3, [-14.1;-17.0]). As recently reported by Poirier 365 

et al. (2024), similar arm results in younger and older adults suggest that the ability to plan movements that 366 

optimally use gravity effects to save energy remains functional in older adults. The results obtained in whole-367 

body movement tasks (STS/BTS and WBR) could thus suggest that the difference observed between older and 368 

younger adults does not reflect a deterioration of the ability to plan movements that are optimally adapted to 369 

the gravity environment. Instead, it would suggest a change in movement strategy that compensates for other 370 

deteriorated control processes (for example, the loss of muscle mass & force).  371 

We performed a complementary analysis to determine whether every whole-body task showed the same 372 

age effect (ANCOVA Age x Whole-Body Tasks). This test did not reveal any interaction effect (F(2,42)= 0.77, 373 

P=4.67E-01, ƞ2=0.019), further supporting the interpretation that this is the “whole body” aspect of the task 374 

that impacts the motor strategy in older adults (please see Supplementary Table 3 for full analysis). 375 

Previous studies have proposed that the change in kinematic strategies observed between older and 376 

younger adults during whole-body movements could be explained as a strategy maximizing equilibrium 377 

maintenance rather than energetic efficiency (Casteran et al., 2018; Paizis et al., 2008). Following this 378 

hypothesis, one would predict increasing differences between younger and older adults when the equilibrium 379 

constraint increases. In the present experiment, increased equilibrium constraint was produced by increasing 380 

the target distance during whole body reaching movements (WBR D1 vs WBR D2; alike Casteran et al., 2018). 381 

The Age x Whole-Body Tasks ANCOVA, however, did not reveal such a difference. 382 

Figure 6. Negativity index computed for A. arm and whole-body movements in both groups (WB: Whole Body combines seat-to-
stand/back-to-seat, whole-body reaching from D1 and whole-body reaching from D2) and B. each whole-body task (STS/BTS: 
seat-to-stand/back-to-sit, WBR D1: whole-body reaching from D1 and WBR D2: whole-body reaching from D2). The negativity 
index, defined as T x NA / TA, with NA the Negative Area integrated on the phasic signal between negativity onset and offset, TA 
the Tonic Area integrated on the tonic signal between negativity onset and offset, and T the duration of the negative epoch 
normalized by movement duration. The blue points correspond to the younger participants, and the green points correspond to 
the older participants. Each point corresponds to the mean value of one participant (mean across trials and antigravity muscles, 
and/or tasks). 
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Last, we analyzed kinematic patterns in order to investigate whether the decreased energetic efficiency 383 

observed during whole body tasks in older adults could actually be interpreted as compensation. We tested 384 

whether the negativity of phasic EMGs correlated with kinematic parameters that are related to balance 385 

control (the COM displacement, and COM peak velocity, see Figure 7; and see Supplementary Figure 1 for 386 

detailed results of the reproduction of the tests conducted by Casteran et al., (2018) Paizis et al., (2008). The 387 

EMG criterion during the Back to Seat task was found to be significantly correlated with the COM displacement 388 

(Pearson correlation, P=2.2E-2, Pearson′s r=-0.343) and the COM peak velocity (Pearson correlation, P=1.9E-389 

3, Pearson′s r=-0.476). This same EMG criterion also turned out to be significantly correlated for the Whole-390 

Body Bending task with the COM displacement (Pearson correlation, P=3.2E-3, Pearson′s r=-0.435) and with 391 

the COM peak velocity (Pearson correlation, P=1.2E-7, Pearson′s r=-0.700). The linear regressions revealed 392 

that the more a participant used the effects of gravity, the more and the quicker she/he displaced his COM. 393 

One could interpret this result as demonstrating that older adults lose the ability to plan energetically efficient 394 

movement and, thus, move their whole-body less and more slowly. However, the null age effect on arm 395 

movement control supports the hypothesis that planning efficient movements remains functional in older 396 

adults, as also supported by recent other results (Healy et al., 2023; Huang & Ahmed, 2014; Poirier et al., 2020; 397 

Summerside et al., 2024). Overall, during movements performed with the entire body, i.e., when equilibrium 398 

maintenance is challenged, the present results support an age-related adaptation process that selects a less 399 

energetically efficient but more stable movement strategy in healthy older adults.  400 
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Figure 7. Center of mass analyses. Linear relationship between EMG negativity (Vastus Lateralis and Spinal Erector L1) and total 
displacement of the center of mass during A. back-to-sit movements and B. bending movements from the whole-body reaching 
tasks (averaged between distances D1 and D2). 

 



Exploratory analyses 401 

To provide a fine-grained analysis of the age effect on phasic EMG negativity during whole-body motion, 402 

we probed negativity duration, negativity amplitude, and negativity occurrence across tasks and age-groups 403 

(see Figure 9). Here also, the bigger the values, the bigger the use of gravity effects to produce body motion. 404 

A repeated measure ANCOVA Age x Tasks (Young/Older x STS_BTS/WBRD1/WBRD2) revealed a significant age 405 

effect where negativity duration was larger in younger compared to older participants (F(1,36)= 21.49, P=4.54E-406 

05, ƞ2=0.374). The age effect did not reach significance for negativity occurrence (F(1,36)= 3.62, P=0.065, 407 

ƞ2=0.091) nor for negativity amplitude (F(1,36)= 1.16, P=0.28, ƞ2=0.031). No interaction between Age and the 408 

other factors reached significance (see Supplementary Table 3 for detailed results). Overall, all variables 409 

showed qualitatively smaller negativity on phasic EMGs, thus reduced use of gravity effects, in older compared 410 

to younger adults. As already observed for arm movements (Poirier et al. 2024), it is mainly the duration of 411 

inactivation that is modulated. 412 

Here we were interested in comparing arm movement and whole-body movement control because the 413 

scientific literature has reported that the control of whole-body movements changes with age, while the 414 

control of arm movements does not (Casteran et al., 2018; Paizis et al., 2008; Poirier et al., 2020, 2024; 415 

Vernazza-Martin et al., 2008). Focusing on a limited number of muscles is problematic, as we risk probing 416 

muscles whose activation patterns are not affected by age. To ensure that our restrictive theory-driven analysis 417 

provides meaningful results, we verified that our cherry-picked muscles truly conveyed information about age-418 

related modifications of whole-body movement control. To this aim, we employed machine learning analyses 419 

that quantified how much each muscle activation was altered by age. This allowed controlling that we were 420 

actually focusing on muscles that discriminated movement control between younger and older adults. 421 

 Our rationale was the following: if the algorithm can successfully separate the data of younger and older 422 

adults, using antigravity muscle activation patterns, this would demonstrate that important information is 423 

contained in those muscles regarding age-related modifications of movement control. For more details on 424 

similar use and operation of machine learning algorithms on EMG signals, please see (Chambellant et al., 2024; 425 

Thomas et al., 2023; Tolambiya et al., 2011). Here we present the results of a Linear Discriminant Analysis (LDA, 426 

Johnson & Wichern, 1988) but we verified that we obtained similar conclusions with two other algorithms, 427 

namely the Quadratic Discriminant Analysis (QDA, Cover, 1965) and the Support Vector Machine (SVM, Vapnik 428 

and Lerner, 1965).  429 

The Machine Learning analysis indeed revealed that antigravity muscles contained important information, 430 

allowing separating age-groups with some of the best success-rates (see Figure 8 for results regarding LDA 431 

accuracy). The vastus lateralis (VL) and the spinal erectors on L1 (ESL1) achieved the best classification 432 

accuracies of 57.72% and 59.51% respectively (considering that these classifications are significantly better 433 

than chance if they are above 52.5% according to a fairness test). The main results presented here are 434 

therefore quantitatively based. They originate from analyses of the muscles that show the most information 435 

to distinguish younger from older adults during whole-body movement. Other muscles, such as DP or EST7, 436 

also exhibit reasonably good classification accuracies. This is not unexpected as humans and animals are known 437 

to control their varied muscles in a synergistic manner (Berret et al., 2009; d’Avella et al., 2006; Tresch et al., 438 

1999), and even the slightest alteration of movement strategy may require modifying the activation of several 439 

muscles. 440 

 441 



Figure 8. A. Heatmap representing the accuracy of the LDA algorithm to discriminate young from older adults using phasic EMGs 
recorded during the tasks mobilizing the entire body. The eight first lines correspond to the accuracy of each individual muscle. 
The last line corresponds to the accuracy of taking all muscles simultaneously (DA: Anterior deltoid, DP: Posterior deltoid, VL: 
Vastus Lateralis, BF: Biceps Femoris, ESL1: Erector Spinae in L1, EST7: Erector Spinae in T7, TA: Tibialis Anterior, SOL: Soleus). The 
first six columns correspond to the six whole-body tasks of the experiment (STS = Sit To Stand; BTS = Back To Sit; WBR D1 = Whole 
Body Reaching near target; WBR D2 = Whole body reaching far target), the last column corresponds to the average accuracy of 
the six tasks for each muscle. This analysis has been conducted to showcase which muscles are important for discrimination. We 
can see taht those antigravity muscles (muscles that act against gravity, in our case, the VL and the ESL1) contain relevant 
information as they reach the highest scores. B. Mean ± SD distance between groups representations by the LDA algorithm for 
each individual muscle (DA: Anterior deltoid; DP: Posterior deltoid; VL: Vastus Lateralis; BF: Biceps Femoris; ESL1: Erector Spinae 
in L1; EST7: Erector Spinae in T7; TA: Tibialis Anterior; SOL: Soleus). The higher the distance, the more differentiable the groups 
are. Values corresponds to the average distance obtain for all six tasks. We can see that those antigravity muscles (muscles that 
act against gravity, in our case, the VL and the ESL1) contain relevant information as they reach some of the highest values. Error 
bars correspond to the standard error across a five-fold cross-validation. 
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Figure 9. Mean ± SD negativity quantification for all tasks and groups (STS: Seat-to-stand, BTS: Back-to-seat, WBR: Whole-body-reaching, D1: Short distance=15% of the heighy of the subject, and D2: 
Long distance=30% of the heighy of the subject). Quantification was carried out using three criteria: negativity duration (panel A), negativity amplitude (panel B), and negativity occurrence (panel C) 
on the antigravity muscles (vastus lateralis and the erector spinae). The blue points correspond to the younger participants, and the green points correspond to the older participants. Each point 
corresponds to the mean value across trials and antigravity muscles. 
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Discussion 444 

In younger and older adults, we investigated the muscle activation patterns responsible for arm and 445 

whole-body movements. The results revealed an age-related alteration of muscle activation that differed 446 

between the types of tasks. Comparing older adults to younger ones, we found that a muscle marker of 447 

energetic efficiency was reduced during whole-body movements, but the results show no evidence that 448 

this marker was reduced during arm movements. Previous works have demonstrated that this marker 449 

allows quantifying the output of a sensorimotor control process that adapts human movements to gravity 450 

(Gaveau et al., 2021; Poirier et al., 2022, 2024). More precisely, this marker allows for quantifying how 451 

much one harvests gravity effects to save energy. Here, arm movement results reveal that this energetic-452 

efficiency process remains functional in older adults. During whole-body movements, however, the present 453 

results reveal that a criteria linked to energetic-efficiency was downregulated in older adults compared to 454 

younger adults. Overall, the present results suggest a compensation process that modulates planning 455 

strategies to maximize equilibrium in older adults.   456 

Age-related compensatory processes in sensorimotor control. A number of studies have  proposed 457 

that the differences observed between younger and older adults can be interpreted as compensations for 458 

age-related deteriorations. Of particular interest are studies from the last decade that have sought to 459 

investigate specific motor control processes rather than broad motor performance. For example, some of 460 

these studies indirectly suggested that older adults favor feedforward rather than feedback control (Moran 461 

et al., 2014; Wolpe et al., 2016) to compensate for the attenuation of sensory processing with increasing 462 

age (Moran et al., 2014; Parthasharathy et al., 2022; Saenen et al., 2023). Others indirectly suggested that 463 

older adults favor movement efficiency over precision (Healy et al., 2023; Poirier et al., 2020) to 464 

compensate for their increased energetic cost (Didier et al., 1993; Hortobagyi et al., 2011; John et al., 2009). 465 

Yet, because the focus of these studies was not on compensatory processes, they did not include dedicated 466 

experimental conditions. The aim of the present study was to fill this gap. 467 

Maintained efficiency of arm movements in older adults. The metabolic rate is known to influence 468 

resource use, body size, rate of senescence, and survival probability (Brown et al., 2004; DeLong et al., 469 

2010; Strotz et al., 2018; Van Voorhies & Ward, 1999). The nervous system has therefore developed the 470 

ability to design movement strategies that minimize our every-day efforts (Cheval et al., 2018; Gaveau et 471 

al., 2016; Huang et al., 2012; Morel et al., 2017; Selinger et al., 2015; Shadmehr et al., 2016). The present 472 

findings confirm the results of previous arm movement studies that proposed a theory according to which 473 

motor control takes advantage of gravity effects to save energy (Berret et al., 2008; Crevecoeur et al., 2009; 474 

Gaveau et al., 2014, 2016, 2021; Gaveau & Papaxanthis, 2011). Here, we focused on the muscle activation 475 

marker of gravity-related energetic-efficiency, i.e., the negativity of phasic EMG. Previous modeling and 476 

experimental work demonstrated that this phasic EMG negativity results from an optimal control process 477 

that plans efficient arm movements in the gravity field (Gaveau et al., 2021). As reported by (Poirier et al., 478 

2024), we found similar phasic EMG negativity during arm movements in older and younger adults. Thus, 479 

arm movements equally optimized gravity effects in younger and older adults. These results align with 480 

those of studies that probed progressive motor adaptation to a new environment in older adults. Using 481 

locally induced force fields in a robotic environment, these studies revealed that older adults decreased 482 

their metabolic costs similarly to younger adults while adapting to new environmental dynamics (Healy et 483 

al., 2023; Huang & Ahmed, 2014). Overall, results from arm movement studies advocate for the 484 

maintenance of the ability to optimally integrate environmental dynamics and plan arm movements that 485 

are energetically efficient in older adults.  486 

Whole-body movements also harvest gravity effects to save energy. Current results also extend the 487 

current knowledge on the planning of energetically efficient movements to more global movements, both 488 

in younger and older adults. They unravel that deactivating muscles below the tonic level that would be 489 

necessary to compensate for external dynamics are not only relevant to controlling focal arm movement 490 

but also for whole-body movements. Using a combination of modeling and experimental work, previous 491 

studies demonstrated that healthy participants move their arms following trajectories and using muscular 492 

patterns that save energy in the gravity environment (Berret et al., 2008; Crevecoeur et al., 2009; Gaveau 493 

et al., 2014, 2016, 2021; Gaveau & Papaxanthis, 2011). To isolate gravity effects, most studies focused on 494 

one-degree-of-freedom arm movements. Although those studies allowed us to clearly demonstrate how 495 



motor planning integrates gravity effects into motor planning, one-degree-of-freedom movements are 496 

hardly representative of the rich and complex human movement repertoire. The present study, using more 497 

ecological movements, basically extends the optimal integration of gravity effects theory to every-day 498 

movements. 499 

Decreased efficiency of whole-body movements in older adults. Contrary to focal arm movements, 500 

we observed a strong age difference during global movements that engaged the entire body, here sit to 501 

stand / back to sit and whole-body reaching movements. Specifically, the negativity of phasic EMG was 502 

significantly reduced in older compared to younger adults. This suggests that whole-body movements are 503 

less energetically efficient in older adults than in younger ones, adding to the general result that global 504 

movements are more energy-demanding for older adults compared to younger adults (Didier et al., 1993; 505 

Hortobagyi et al., 2003, 2011; John et al., 2009). Previous kinematic studies suggested that older adults 506 

favor movement strategies that maximize balance maintenance rather than energy efficiency (Casteran et 507 

al., 2018; Paizis et al., 2008). However, age differences observed during whole-body movements may also 508 

be interpreted as an inability to save energy when coordinating complex movements (Goodpaster et al., 509 

2006; Henry & Baudry, 2019; Quinlan et al., 2018; Vernazza-Martin et al., 2008). Here, contrasting results 510 

from arm and whole-body movements in the same participants, we provide support for a compensation 511 

process that adapts movement strategy in older adults, rather than a deterioration of the ability to 512 

optimally coordinate whole-body movements. Since arm movements revealed that older participants 513 

maintained the ability to plan energetically efficient movements, altered whole-body movement may be 514 

explained as an adaptation of movement strategy rather than deteriorated motor planning. More 515 

importantly, we found that decreased efficiency was associated with decreased center-of-mass 516 

displacement and speed, i.e., less instability. This further suggests that decreased efficiency in older adults 517 

is a compensation process that trades efficiency with equilibrium maintenance. This could be explained as 518 

an optimal motor planning process that minimizes a composite cost function; i.e., energy and unstability. 519 

It has been proposed that the central nervous system combines different costs – related to energy, 520 

precision, or duration, for example – when planning a movement (Berret et al., 2011; Gielen, 2009; Healy 521 

et al., 2023; Liu & Todorov, 2007; Mombaur et al., 2010; Poirier et al., 2024; Tanis et al., 2023; Vu et al., 522 

2016). In older adults, this combination would increase the relative weighting of the instability 523 

(equilibrium) cost and decrease the relative weighting of the energetic cost. Future work may use this 524 

framework to probe age-related motor adaptation.  525 

Effect of target distance. During the whole-body reaching task, reusing the protocol (Casteran et al., 526 

2018), we varied the antero-posterior distance of the target to be reached. Casteran et al. (2018) found 527 

larger differences between younger and older participants when the target was further. Consequently, we 528 

hypothesized that the further away the target, the greater the age differences in the negativity epochs of 529 

phasic EMGs. The present results do not validate this hypothesis (see Supplementary Table 3).  530 

Age-related compensation in the brain. In the sensorimotor field, following the consensus that aging 531 

is associated with increased activation and increased spatial recruitment, numerous studies have 532 

attempted to establish a correlation between brain activation and behavioral performance in older adults 533 

(for reviews, see Fettrow et al., 2021; Poirier et al., 2021; Seidler et al., 2010; Ward, 2006). This literature 534 

has not reached a consensus on the neural changes underlying compensatory mechanisms in the aging 535 

brain. Several studies reported a positive correlation (Cassady, Gagnon, et al., 2020; Clark et al., 2014; 536 

Harada et al., 2009; Heuninckx et al., 2008; Holtzer et al., 2015; Jor’dan et al., 2017; Larivière et al., 2019; 537 

Mattay et al., 2002; Spedden et al., 2019), and as many reported no correlation or even a negative 538 

correlation (Bernard & Seidler, 2012; Cassady et al., 2019; Cassady, Ruitenberg, et al., 2020; Fernandez et 539 

al., 2019; Hawkins et al., 2018; Holtzer et al., 2016; Loibl et al., 2011; Riecker et al., 2006; Ward et al., 2008). 540 

Building on the theoretical work of Krakauer et al. (2017), we recently proposed that an important reason 541 

for this lack of consensus may be that previous studies, while focusing on brain activations, used crude 542 

behavioral paradigms that likely mixed deteriorated and compensatory processes (Poirier et al., 2021). 543 

Using behavioral paradigms that focus on specific motor control processes, as performed here, could help 544 

differentiate compensatory mechanisms from deteriorative ones. 545 

Role of physical and cognitive fitness in age-related compensation. Physical and cognitive fitness may 546 

influence how much older adults favor stability over energetic efficiency. It is well-known that physical and 547 

cognitive fitness significantly impact functional mobility in older adults (Marusic et al., 2018; 548 

Wickramarachchi et al., 2023; Zhao et al., 2014). One could speculate that physical and cognitive fitness 549 



are inversely related to the level of physical and cognitive deterioration. For example, muscle force and 550 

sensory integration are crucial for controlling balance. The more deteriorated they are, the greater the 551 

need for compensatory processes to adapt movement control to the participant’s capacities. Future 552 

research should account for variations in physical and cognitive fitness to better understand their role in 553 

the development of compensatory mechanisms.  554 

Simple mono-articular vs complex multi-articular arm movements. Another aspect that needs to be 555 

highlighted here is the choice of the arm task, which is not representative of all existing tasks for studying 556 

upper limb motor skills. Using this very same task, the results from two previous studies also support the 557 

preservation of arm movement efficiency in older adults (Poirier et al., 2020, 2024). One may wonder 558 

whether the present conclusions would hold for more complex arm movements. Using multi-degree of 559 

freedom arm movements to study motor adaptation to an externally imposed force-field, other studies 560 

also reported results showing that, alike younger adults, older adults maintain the ability to produce 561 

movements that are energetically efficient (Healy et al., 2023; Summerside et al., 2024). The present mono-562 

articular results are therefore likely to generalize to other types of arm movements. In young adults, the 563 

efficient integration of gravity effects to save energy has been demonstrated with varied arm movements, 564 

such as single or muti-degree of freedom pointing movements, drawing movements, reach to grasp 565 

movements, or arm movements that transport a hand-grasped object (Berret et al., 2008; Crevecoeur et 566 

al., 2009; Gaveau et al., 2011; Gaveau & Papaxanthis, 2011; Le Seac’h & McIntyre, 2007; Papaxanthis et al., 567 

1998, 2005; Yamamoto & Kushiro, 2014b). Future work may test whether the present conclusions extend 568 

to more complex and functional arm movements. 569 

In conclusion, probing a specific motor control process, the present study provides a set of behavioral 570 

results that support the interpretation of a compensatory process that counterbalances other deteriorated 571 

processes in older adults. Probing age effects on specific sensorimotor control processes may help 572 

disentangle compensation from deterioration processes that occur through healthy aging (Poirier et al., 573 

2021). We believe that understanding compensation at a behavioral level is an important step toward 574 

pinpointing its neural underpinning (Krakauer et al., 2017) and, later, preventing unhealthy aging (Baltes & 575 

Baltes, 1990; Martin et al., 2015; Zhang & Radhakrishnan, 2018). 576 

Acknowledgements 577 

We thank Yves Ballay, Denis Barbusse, and Gabriel Poirier for their support during the pilot study. We 578 

also thank all the participants who took part in the experiment. 579 

Data, scripts, code, and supplementary information availability 580 

Data are available online: 10.5281/zenodo.10619701, webpage hosting the data: 581 

https://doi.org/10.5281/zenodo.10619701 (citation of the data eg Mathieu et al, 2024); 582 

Scripts and code are available online: 10.5281/zenodo.10634004, webpage hosting the scripts: 583 

https://doi.org/10.5281/zenodo.10634004 (citation of the scripts eg Mathieu et al, 2024); 584 

Supplementary information is available online: 10.5281/zenodo.10671496, webpage hosting the file: 585 

https://doi.org/10.5281/zenodo.12671953 (citation of the supplementary file eg Mathieu et al, 2024); 586 

Conflict of interest disclosure 587 

The authors declare that they comply with the PCI rule of having no financial conflicts of interest in 588 

relation to the content of the article.  589 

Jérémie Gaveau is a member of the managing board of the PCI Health & Movement Sciences. 590 

Funding 591 

This entire study is part of a thesis funded by the National Research Agency (ANR I-SITE BFC). 592 

https://doi.org/10.5281/zenodo.10619701
https://doi.org/10.5281/zenodo.10634004
https://doi.org/10.5802/fake.doi
https://doi.org/10.5802/fake.doi


References 593 

Baltes, P. B. (1997). On the incomplete architecture of human ontogeny : Selection, optimization, and 594 

compensation as foundation of developmental theory. American Psychologist, 52(4), 366‑380. 595 

https://doi.org/10.1037/0003-066X.52.4.366 596 

Baltes, P. B., & Baltes, M. M. (1990). Psychological perspectives on successful aging : The model of 597 

selective optimization with compensation. In P. B. Baltes & M. M. Baltes (Éds.), Successful 598 

Aging (1re éd., p. 1‑34). Cambridge University Press. 599 

https://doi.org/10.1017/CBO9780511665684.003 600 

Barbero, M., Merletti, R., & Rainoldi, A. (2012). Atlas of Muscle Innervation Zones. Springer Milan. 601 

https://doi.org/10.1007/978-88-470-2463-2 602 

Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity : Emerging 603 

concepts in cognitive reserve. Trends in Cognitive Sciences, 17(10), 502‑509. 604 

https://doi.org/10.1016/j.tics.2013.08.012 605 

Bernard, J. A., & Seidler, R. D. (2012). Evidence for motor cortex dedifferentiation in older adults. 606 

Neurobiology of Aging, 33(9), 1890‑1899. 607 

https://doi.org/10.1016/j.neurobiolaging.2011.06.021 608 

Berret, B., Bonnetblanc, F., Papaxanthis, C., & Pozzo, T. (2009). Modular Control of Pointing beyond 609 

Arm’s Length. Journal of Neuroscience, 29(1), 191‑205. 610 

https://doi.org/10.1523/JNEUROSCI.3426-08.2009 611 

Berret, B., Chiovetto, E., Nori, F., & Pozzo, T. (2011). Evidence for Composite Cost Functions in Arm 612 

Movement Planning : An Inverse Optimal Control Approach. PLoS Computational Biology, 613 

7(10), e1002183. https://doi.org/10.1371/journal.pcbi.1002183 614 

Berret, B., Darlot, C., Jean, F., Pozzo, T., Papaxanthis, C., & Gauthier, J. P. (2008). The Inactivation 615 

Principle : Mathematical Solutions Minimizing the Absolute Work and Biological Implications 616 

for the Planning of Arm Movements. PLoS Computational Biology, 4(10), e1000194. 617 

https://doi.org/10.1371/journal.pcbi.1000194 618 

Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). TOWARD A 619 

METABOLIC THEORY OF ECOLOGY. Ecology, 85(7), 1771‑1789. 620 

https://doi.org/10.1890/03-9000 621 

Buckles, V. D. (1993). Age-Related Slowing. In G. E. Stelmach & V. Hömberg (Éds.), Sensorimotor 622 

Impairment in the Elderly (p. 73‑87). Springer Netherlands. https://doi.org/10.1007/978-94-623 

011-1976-4_6 624 

Buneo, C. A., Soechting, J. F., & Flanders, M. (1994). Muscle activation patterns for reaching : The 625 

representation of distance and time. Journal of Neurophysiology, 71(4), 1546‑1558. 626 

https://doi.org/10.1152/jn.1994.71.4.1546 627 

Bunzeck, N., Steiger, T. K., Krämer, U. M., Luedtke, K., Marshall, L., Obleser, J., & Tune, S. (2024). 628 

Trajectories and contributing factors of neural compensation in healthy and pathological aging. 629 

Neuroscience & Biobehavioral Reviews, 156, 105489. 630 

https://doi.org/10.1016/j.neubiorev.2023.105489 631 

Cassady, K., Gagnon, H., Freiburger, E., Lalwani, P., Simmonite, M., Park, D. C., Peltier, S. J., Taylor, 632 

S. F., Weissman, D. H., Seidler, R. D., & Polk, T. A. (2020). Network segregation varies with 633 

neural distinctiveness in sensorimotor cortex. NeuroImage, 212, 116663. 634 

https://doi.org/10.1016/j.neuroimage.2020.116663 635 

Cassady, K., Gagnon, H., Lalwani, P., Simmonite, M., Foerster, B., Park, D., Peltier, S. J., Petrou, M., 636 

Taylor, S. F., Weissman, D. H., Seidler, R. D., & Polk, T. A. (2019). Sensorimotor network 637 

segregation declines with age and is linked to GABA and to sensorimotor performance. 638 

NeuroImage, 186, 234‑244. https://doi.org/10.1016/j.neuroimage.2018.11.008 639 

Cassady, K., Ruitenberg, M. F. L., Reuter-Lorenz, P. A., Tommerdahl, M., & Seidler, R. D. (2020). 640 

Neural Dedifferentiation across the Lifespan in the Motor and Somatosensory Systems. 641 

Cerebral Cortex, 30(6), 3704‑3716. https://doi.org/10.1093/cercor/bhz336 642 

Casteran, M., Hilt, P. M., Mourey, F., Manckoundia, P., French, R., & Thomas, E. (2018). Shifts in Key 643 

Time Points and Strategies for a Multisegment Motor Task in Healthy Aging Subjects. The 644 

Journals of Gerontology: Series A, 73(12), 1609‑1617. https://doi.org/10.1093/gerona/gly066 645 



Chambellant, F., Gaveau, J., Papaxanthis, C., & Thomas, E. (2023). Deactivation and Collective Phasic 646 

Muscular Tuning for Pointing Direction : Insights from Machine Learning [Preprint]. 647 

Neuroscience. https://doi.org/10.1101/2023.03.15.532800 648 

Chambellant, F., Gaveau, J., Papaxanthis, C., & Thomas, E. (2024). Deactivation and Collective Phasic 649 

Muscular Tuning for Pointing Direction : Insights from Machine Learning. Heliyon, e33461. 650 

https://doi.org/10.1016/j.heliyon.2024.e33461 651 

Cheval, B., Tipura, E., Burra, N., Frossard, J., Chanal, J., Orsholits, D., Radel, R., & Boisgontier, M. P. 652 

(2018). Avoiding sedentary behaviors requires more cortical resources than avoiding physical 653 

activity : An EEG study. Neuropsychologia, 119, 68‑80. 654 

https://doi.org/10.1016/j.neuropsychologia.2018.07.029 655 

Clark, D. J., Christou, E. A., Ring, S. A., Williamson, J. B., & Doty, L. (2014). Enhanced 656 

Somatosensory Feedback Reduces Prefrontal Cortical Activity During Walking in Older 657 

Adults. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 658 

69(11), 1422‑1428. https://doi.org/10.1093/gerona/glu125 659 

Cover, T. M. (1965). Geometrical and Statistical Properties of Systems of Linear Inequalities with 660 

Applications in Pattern Recognition. IEEE Transactions on Electronic Computers, EC-14(3), 661 

326‑334. https://doi.org/10.1109/PGEC.1965.264137 662 

Crevecoeur, F., Thonnard, J.-L., & Lefèvre, P. (2009). Optimal Integration of Gravity in Trajectory 663 

Planning of Vertical Pointing Movements. Journal of Neurophysiology, 102(2), 786‑796. 664 

https://doi.org/10.1152/jn.00113.2009 665 

Darling, W. G., Cooke, J. D., & Brown, S. H. (1989). Control of simple arm movements in elderly 666 

humans. Neurobiology of Aging, 10(2), 149‑157. https://doi.org/10.1016/0197-4580(89)90024-667 

9 668 

d’Avella, A., Fernandez, L., Portone, A., & Lacquaniti, F. (2008). Modulation of Phasic and Tonic 669 

Muscle Synergies With Reaching Direction and Speed. Journal of Neurophysiology, 100(3), 670 

1433‑1454. https://doi.org/10.1152/jn.01377.2007 671 

d’Avella, A., Portone, A., Fernandez, L., & Lacquaniti, F. (2006). Control of Fast-Reaching Movements 672 

by Muscle Synergy Combinations. Journal of Neuroscience, 26(30), 7791‑7810. 673 

https://doi.org/10.1523/JNEUROSCI.0830-06.2006 674 

DeLong, J. P., Okie, J. G., Moses, M. E., Sibly, R. M., & Brown, J. H. (2010). Shifts in metabolic 675 

scaling, production, and efficiency across major evolutionary transitions of life. Proceedings 676 

of the National Academy of Sciences, 107(29), 12941‑12945. 677 

https://doi.org/10.1073/pnas.1007783107 678 

Didier, J. P., Mourey, F., Brondel, L., Marcer, I., Milan, C., Casillas, J. M., Verges, B., & Winsland, J. 679 

K. D. (1993). The Energetic Cost of Some Daily Activities : A Comparison in a Young and Old 680 

Population. Age and Ageing, 22(2), 90‑96. https://doi.org/10.1093/ageing/22.2.90 681 

Fernandez, N. B., Hars, M., Trombetti, A., & Vuilleumier, P. (2019). Age-related changes in attention 682 

control and their relationship with gait performance in older adults with high risk of falls. 683 

NeuroImage, 189, 551‑559. https://doi.org/10.1016/j.neuroimage.2019.01.030 684 

Fettrow, T., Hupfeld, K., Reimann, H., Choi, J., Hass, C., & Seidler, R. (2021). Age differences in 685 

adaptation of medial-lateral gait parameters during split-belt treadmill walking. Scientific 686 

Reports, 11(1), 21148. https://doi.org/10.1038/s41598-021-00515-z 687 

Flanders, M., & Herrmann, U. (1992). Two components of muscle activation : Scaling with the speed 688 

of arm movement. Journal of Neurophysiology, 67(4), 931‑943. 689 

https://doi.org/10.1152/jn.1992.67.4.931 690 

Flanders, M., Pellegrini, J. J., & Soechting, J. F. (1994). Spatial/temporal characteristics of a motor 691 

pattern for reaching. Journal of Neurophysiology, 71(2), 811‑813. 692 

https://doi.org/10.1152/jn.1994.71.2.811 693 

Gaveau, J., Berret, B., Angelaki, D. E., & Papaxanthis, C. (2016). Direction-dependent arm kinematics 694 

reveal optimal integration of gravity cues. eLife, 5, e16394. https://doi.org/10.7554/eLife.16394 695 

Gaveau, J., Berret, B., Demougeot, L., Fadiga, L., Pozzo, T., & Papaxanthis, C. (2014). Energy-related 696 

optimal control accounts for gravitational load : Comparing shoulder, elbow, and wrist 697 

rotations. Journal of Neurophysiology, 111(1), 4‑16. https://doi.org/10.1152/jn.01029.2012 698 



Gaveau, J., Grospretre, S., Berret, B., Angelaki, D. E., & Papaxanthis, C. (2021). A cross-species neural 699 

integration of gravity for motor optimization. Science Advances, 7(15), eabf7800. 700 

https://doi.org/10.1126/sciadv.abf7800 701 

Gaveau, J., Paizis, C., Berret, B., Pozzo, T., & Papaxanthis, C. (2011). Sensorimotor adaptation of 702 

point-to-point arm movements after spaceflight : The role of internal representation of gravity 703 

force in trajectory planning. Journal of Neurophysiology, 106(2), 620‑629. 704 

https://doi.org/10.1152/jn.00081.2011 705 

Gaveau, J., & Papaxanthis, C. (2011). The Temporal Structure of Vertical Arm Movements. PLoS ONE, 706 

6(7), e22045. https://doi.org/10.1371/journal.pone.0022045 707 

Gentili, R., Cahouet, V., & Papaxanthis, C. (2007). Motor planning of arm movements is direction-708 

dependent in the gravity field. Neuroscience, 145(1), 20‑32. 709 

https://doi.org/10.1016/j.neuroscience.2006.11.035 710 

Gielen, S. (2009). Review of Models for the Generation of Multi-Joint Movements in 3-D. In D. Sternad 711 

(Éd.), Progress in Motor Control (Vol. 629, p. 523‑550). Springer US. 712 

https://doi.org/10.1007/978-0-387-77064-2_28 713 

Goble, D. J., Coxon, J. P., Wenderoth, N., Van Impe, A., & Swinnen, S. P. (2009). Proprioceptive 714 

sensibility in the elderly : Degeneration, functional consequences and plastic-adaptive 715 

processes. Neuroscience & Biobehavioral Reviews, 33(3), 271‑278. 716 

https://doi.org/10.1016/j.neubiorev.2008.08.012 717 

Goodpaster, B. H., Park, S. W., Harris, T. B., Kritchevsky, S. B., Nevitt, M., Schwartz, A. V., 718 

Simonsick, E. M., Tylavsky, F. A., Visser, M., Newman, A. B., & for the Health ABC Study. 719 

(2006). The Loss of Skeletal Muscle Strength, Mass, and Quality in Older Adults : The Health, 720 

Aging and Body Composition Study. The Journals of Gerontology Series A: Biological 721 

Sciences and Medical Sciences, 61(10), 1059‑1064. https://doi.org/10.1093/gerona/61.10.1059 722 

Gueugneau, N., Martin, A., Gaveau, J., & Papaxanthis, C. (2023). Gravity-efficient motor control is 723 

associated with contraction-dependent intracortical inhibition. iScience, 26(7), 107150. 724 

https://doi.org/10.1016/j.isci.2023.107150 725 

Harada, T., Miyai, I., Suzuki, M., & Kubota, K. (2009). Gait capacity affects cortical activation patterns 726 

related to speed control in the elderly. Experimental Brain Research, 193(3), 445‑454. 727 

https://doi.org/10.1007/s00221-008-1643-y 728 

Hawkins, K. A., Fox, E. J., Daly, J. J., Rose, D. K., Christou, E. A., McGuirk, T. E., Otzel, D. M., 729 

Butera, K. A., Chatterjee, S. A., & Clark, D. J. (2018). Prefrontal over-activation during 730 

walking in people with mobility deficits : Interpretation and functional implications. Human 731 

Movement Science, 59, 46‑55. https://doi.org/10.1016/j.humov.2018.03.010 732 

Healy, C. M., Berniker, M., & Ahmed, A. A. (2023). Learning vs. minding : How subjective costs can 733 

mask motor learning. PLOS ONE, 18(3), e0282693. 734 

https://doi.org/10.1371/journal.pone.0282693 735 

Henry, M., & Baudry, S. (2019). Age-related changes in leg proprioception : Implications for postural 736 

control. Journal of Neurophysiology, 122(2), 525‑538. https://doi.org/10.1152/jn.00067.2019 737 

Heuninckx, S., Wenderoth, N., & Swinnen, S. P. (2008). Systems Neuroplasticity in the Aging Brain : 738 

Recruiting Additional Neural Resources for Successful Motor Performance in Elderly Persons. 739 

The Journal of Neuroscience, 28(1), 91‑99. https://doi.org/10.1523/JNEUROSCI.3300-740 

07.2008 741 

Hoffstaedter, F., Grefkes, C., Roski, C., Caspers, S., Zilles, K., & Eickhoff, S. B. (2015). Age-related 742 

decrease of functional connectivity additional to gray matter atrophy in a network for 743 

movement initiation. Brain Structure and Function, 220(2), 999‑1012. 744 

https://doi.org/10.1007/s00429-013-0696-2 745 

Holtzer, R., Mahoney, J. R., Izzetoglu, M., Wang, C., England, S., & Verghese, J. (2015). Online fronto-746 

cortical control of simple and attention-demanding locomotion in humans. NeuroImage, 112, 747 

152‑159. https://doi.org/10.1016/j.neuroimage.2015.03.002 748 

Holtzer, R., Verghese, J., Allali, G., Izzetoglu, M., Wang, C., & Mahoney, J. R. (2016). Neurological 749 

Gait Abnormalities Moderate the Functional Brain Signature of the Posture First Hypothesis. 750 

Brain Topography, 29(2), 334‑343. https://doi.org/10.1007/s10548-015-0465-z 751 



Hondzinski, J. M., Soebbing, C. M., French, A. E., & Winges, S. A. (2016). Different damping 752 

responses explain vertical endpoint error differences between visual conditions. Experimental 753 

Brain Research, 234(6), 1575‑1587. https://doi.org/10.1007/s00221-015-4546-8 754 

Hortobagyi, T., Finch, A., Solnik, S., Rider, P., & DeVita, P. (2011). Association Between Muscle 755 

Activation and Metabolic Cost of Walking in Young and Old Adults. The Journals of 756 

Gerontology Series A: Biological Sciences and Medical Sciences, 66A(5), 541‑547. 757 

https://doi.org/10.1093/gerona/glr008 758 

Hortobagyi, T., Mizelle, C., Beam, S., & DeVita, P. (2003). Old Adults Perform Activities of Daily 759 

Living Near Their Maximal Capabilities. The Journals of Gerontology Series A: Biological 760 

Sciences and Medical Sciences, 58(5), M453‑M460. https://doi.org/10.1093/gerona/58.5.M453 761 

Huang, H. J., & Ahmed, A. A. (2014). Older adults learn less, but still reduce metabolic cost, during 762 

motor adaptation. Journal of Neurophysiology, 111(1), 135‑144. 763 

https://doi.org/10.1152/jn.00401.2013 764 

Huang, H. J., Kram, R., & Ahmed, A. A. (2012). Reduction of Metabolic Cost during Motor Learning 765 

of Arm Reaching Dynamics. Journal of Neuroscience, 32(6), 2182‑2190. 766 

https://doi.org/10.1523/JNEUROSCI.4003-11.2012 767 

Huber, M., Knottnerus, J. A., Green, L., Horst, H. V. D., Jadad, A. R., Kromhout, D., Leonard, B., 768 

Lorig, K., Loureiro, M. I., Meer, J. W. M. V. D., Schnabel, P., Smith, R., Weel, C. V., & Smid, 769 

H. (2011). How should we define health? BMJ, 343(jul26 2), d4163‑d4163. 770 

https://doi.org/10.1136/bmj.d4163 771 

Jeon, W., Hsiao, H.-Y., & Griffin, L. (2021). Effects of different initial foot positions on kinematics, 772 

muscle activation patterns, and postural control during a sit-to-stand in younger and older 773 

adults. Journal of Biomechanics, 117, 110251. https://doi.org/10.1016/j.jbiomech.2021.110251 774 

John, E. B., Liu, W., & Gregory, R. W. (2009). Biomechanics of Muscular Effort : Age-Related 775 

Changes. Medicine & Science in Sports & Exercise, 41(2), 418‑425. 776 

https://doi.org/10.1249/MSS.0b013e3181884480 777 

Johnson, R. A., & Wichern, D. W. (1988). Applied multivariate statistical analysis (2. ed). Prentice 778 

Hall. 779 

Jor’dan, A. J., Poole, V. N., Iloputaife, I., Milberg, W., Manor, B., Esterman, M., & Lipsitz, L. A. 780 

(2017). Executive Network Activation is Linked to Walking Speed in Older Adults : Functional 781 

MRI and TCD Ultrasound Evidence From the MOBILIZE Boston Study. The Journals of 782 

Gerontology: Series A, 72(12), 1669‑1675. https://doi.org/10.1093/gerona/glx063 783 

Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A., & Poeppel, D. (2017). 784 

Neuroscience Needs Behavior : Correcting a Reductionist Bias. Neuron, 93(3), 480‑490. 785 

https://doi.org/10.1016/j.neuron.2016.12.041 786 

Larivière, S., Xifra‐Porxas, A., Kassinopoulos, M., Niso, G., Baillet, S., Mitsis, G. D., & Boudrias, M. 787 

(2019). Functional and effective reorganization of the aging brain during unimanual and 788 

bimanual hand movements. Human Brain Mapping, 40(10), 3027‑3040. 789 

https://doi.org/10.1002/hbm.24578 790 

Larsson, L., Degens, H., Li, M., Salviati, L., Lee, Y. I., Thompson, W., Kirkland, J. L., & Sandri, M. 791 

(2019). Sarcopenia : Aging-Related Loss of Muscle Mass and Function. Physiological Reviews, 792 

99(1), 427‑511. https://doi.org/10.1152/physrev.00061.2017 793 

Le Seac’h, A. B., & McIntyre, J. (2007). Multimodal reference frame for the planning of vertical arms 794 

movements. Neuroscience Letters, 423(3), 211‑215. 795 

https://doi.org/10.1016/j.neulet.2007.07.034 796 

Liu, D., & Todorov, E. (2007). Evidence for the Flexible Sensorimotor Strategies Predicted by Optimal 797 

Feedback Control. The Journal of Neuroscience, 27(35), 9354‑9368. 798 

https://doi.org/10.1523/JNEUROSCI.1110-06.2007 799 

Loibl, M., Beutling, W., Kaza, E., & Lotze, M. (2011). Non-effective increase of fMRI-activation for 800 

motor performance in elder individuals. Behavioural Brain Research, 223(2), 280‑286. 801 

https://doi.org/10.1016/j.bbr.2011.04.040 802 

Manckoundia, P., Mourey, F., Pfitzenmeyer, P., & Papaxanthis, C. (2006). Comparison of motor 803 

strategies in sit-to-stand and back-to-sit motions between healthy and Alzheimer’s disease 804 

elderly subjects. Neuroscience, 137(2), 385‑392. 805 

https://doi.org/10.1016/j.neuroscience.2005.08.079 806 



Martin, P., Kelly, N., Kahana, B., Kahana, E., Willcox, B. J., Willcox, D. C., & Poon, L. W. (2015). 807 

Defining Successful Aging : A Tangible or Elusive Concept? The Gerontologist, 55(1), 14‑25. 808 

https://doi.org/10.1093/geront/gnu044 809 

Marusic, U., Verghese, J., & Mahoney, J. R. (2018). Cognitive-Based Interventions to Improve 810 

Mobility : A Systematic Review and Meta-analysis. Journal of the American Medical Directors 811 

Association, 19(6), 484-491.e3. https://doi.org/10.1016/j.jamda.2018.02.002 812 

Mattay, V. S., Fera, F., Tessitore, A., Hariri, A. R., Das, S., Callicott, J. H., & Weinberger, D. R. (2002). 813 

Neurophysiological correlates of age-related changes in human motor function. Neurology, 814 

58(4), 630‑635. https://doi.org/10.1212/WNL.58.4.630 815 

Millington, P. J., Myklebust, B. M., & Shambes, G. M. (1992). Biomechanical analysis of the sit-to-816 

stand motion in elderly persons. Archives of Physical Medicine and Rehabilitation, 73(7), 817 

609‑617. 818 

Mombaur, K., Truong, A., & Laumond, J.-P. (2010). From human to humanoid locomotion—An 819 

inverse optimal control approach. Autonomous Robots, 28(3), 369‑383. 820 

https://doi.org/10.1007/s10514-009-9170-7 821 

Moran, R. J., Symmonds, M., Dolan, R. J., & Friston, K. J. (2014). The Brain Ages Optimally to Model 822 

Its Environment : Evidence from Sensory Learning over the Adult Lifespan. PLoS 823 

Computational Biology, 10(1), e1003422. https://doi.org/10.1371/journal.pcbi.1003422 824 

Morel, L., Chiang, M. S. R., Higashimori, H., Shoneye, T., Iyer, L. K., Yelick, J., Tai, A., & Yang, Y. 825 

(2017). Molecular and Functional Properties of Regional Astrocytes in the Adult Brain. The 826 

Journal of Neuroscience, 37(36), 8706‑8717. https://doi.org/10.1523/JNEUROSCI.3956-827 

16.2017 828 

Mourey, F., Pozzo, T., Rouhier-Marcer, I., & Didier, J.-P. (1998). A kinematic comparison between 829 

elderly and young subjects standing up from and sitting down in a chair. Age and Ageing, 27(2), 830 

137‑146. https://doi.org/10.1093/ageing/27.2.137 831 

Ouwehand, C., De Ridder, D. T. D., & Bensing, J. M. (2007). A review of successful aging models : 832 

Proposing proactive coping as an important additional strategy. Clinical Psychology Review, 833 

27(8), 873‑884. https://doi.org/10.1016/j.cpr.2006.11.003 834 

Paizis, C., Papaxanthis, C., Berret, B., & Pozzo, T. (2008). Reaching beyond arm length in normal 835 

aging : Adaptation of hand trajectory and dynamic equilibrium. Behavioral Neuroscience, 836 

122(6), 1361‑1370. https://doi.org/10.1037/a0013280 837 

Papaxanthis, C., Pozzo, T., & McIntyre, J. (2005). Kinematic and dynamic processes for the control of 838 

pointing movements in humans revealed by short-term exposure to microgravity. 839 

Neuroscience, 135(2), 371‑383. https://doi.org/10.1016/j.neuroscience.2005.06.063 840 

Papaxanthis, C., Pozzo, T., Vinter, A., & Grishin, A. (1998). The representation of gravitational force 841 

during drawing movements of the arm. Experimental Brain Research, 120(2), 233‑242. 842 

https://doi.org/10.1007/s002210050397 843 

Parthasharathy, M., Mantini, D., & Orban De Xivry, J.-J. (2022). Increased upper-limb sensory 844 

attenuation with age. Journal of Neurophysiology, 127(2), 474‑492. 845 

https://doi.org/10.1152/jn.00558.2020 846 

Pereira, T. D., Shaevitz, J. W., & Murthy, M. (2020). Quantifying behavior to understand the brain. 847 

Nature Neuroscience, 23(12), 1537‑1549. https://doi.org/10.1038/s41593-020-00734-z 848 

Poirier, G., Mourey, F., Sirandre, C., Papaxanthis, C., & Gaveau, J. (2023). Speed-dependent 849 

optimization of gravity effects for motor control. https://doi.org/10.1101/2023.03.14.532654 850 

Poirier, G., Ohayon, A., Juranville, A., Mourey, F., & Gaveau, J. (2021). Deterioration, Compensation 851 

and Motor Control Processes in Healthy Aging, Mild Cognitive Impairment and Alzheimer’s 852 

Disease. Geriatrics, 6(1), 33. https://doi.org/10.3390/geriatrics6010033 853 

Poirier, G., Papaxanthis, C., Lebigre, M., Juranville, A., Mathieu, R., Savoye-Laurens, T., 854 

Manckoundia, P., Mourey, F., & Gaveau, J. (2024). Aging decreases the lateralization of 855 

gravity-related effort minimization during vertical arm movements. 856 

https://doi.org/10.1101/2021.10.26.465988 857 

Poirier, G., Papaxanthis, C., Mourey, F., & Gaveau, J. (2020). Motor Planning of Vertical Arm 858 

Movements in Healthy Older Adults : Does Effort Minimization Persist With Aging? Frontiers 859 

in Aging Neuroscience, 12, 37. https://doi.org/10.3389/fnagi.2020.00037 860 



Poirier, G., Papaxanthis, C., Mourey, F., Lebigre, M., & Gaveau, J. (2022). Muscle effort is best 861 

minimized by the right-dominant arm in the gravity field. Journal of Neurophysiology, 862 

jn.00324.2021. https://doi.org/10.1152/jn.00324.2021 863 

Pousson, M., Lepers, R., & Van Hoecke, J. (2001). Changes in isokinetic torque and muscular activity 864 

of elbow flexors muscles with age. Experimental Gerontology, 36(10), 1687‑1698. 865 

https://doi.org/10.1016/S0531-5565(01)00143-7 866 

Quinlan, J. I., Maganaris, C. N., Franchi, M. V., Smith, K., Atherton, P. J., Szewczyk, N. J., Greenhaff, 867 

P. L., Phillips, B. E., Blackwell, J. I., Boereboom, C., Williams, J. P., Lund, J., & Narici, M. V. 868 

(2018). Muscle and Tendon Contributions to Reduced Rate of Torque Development in Healthy 869 

Older Males. The Journals of Gerontology: Series A, 73(4), 539‑545. 870 

https://doi.org/10.1093/gerona/glx149 871 

Riecker, A., Gröschel, K., Ackermann, H., Steinbrink, C., Witte, O., & Kastrup, A. (2006). Functional 872 

significance of age-related differences in motor activation patterns. NeuroImage, 32(3), 873 

1345‑1354. https://doi.org/10.1016/j.neuroimage.2006.05.021 874 

Rudnicka, E., Napierała, P., Podfigurna, A., Męczekalski, B., Smolarczyk, R., & Grymowicz, M. 875 

(2020). The World Health Organization (WHO) approach to healthy ageing. Maturitas, 139, 876 

6‑11. https://doi.org/10.1016/j.maturitas.2020.05.018 877 

Saenen, L., Verheyden, G., & Orban De Xivry, J.-J. (2023). The differential effect of age on upper limb 878 

sensory processing, proprioception, and motor function. Journal of Neurophysiology, 130(5), 879 

1183‑1193. https://doi.org/10.1152/jn.00364.2022 880 

Saftari, L. N., & Kwon, O.-S. (2018). Ageing vision and falls : A review. Journal of Physiological 881 

Anthropology, 37(1), 11. https://doi.org/10.1186/s40101-018-0170-1 882 

Salat, D. H. (2004). Thinning of the Cerebral Cortex in Aging. Cerebral Cortex, 14(7), 721‑730. 883 

https://doi.org/10.1093/cercor/bhh032 884 

Seidler, R., Bernard, J. A., Burutolu, T. B., Fling, B. W., Gordon, M. T., Gwin, J. T., Kwak, Y., & 885 

Lipps, D. B. (2010). Motor control and aging : Links to age-related brain structural, functional, 886 

and biochemical effects. Neuroscience & Biobehavioral Reviews, 34(5), 721‑733. 887 

https://doi.org/10.1016/j.neubiorev.2009.10.005 888 

Selinger, J. C., O’Connor, S. M., Wong, J. D., & Donelan, J. M. (2015). Humans Can Continuously 889 

Optimize Energetic Cost during Walking. Current Biology, 25(18), 2452‑2456. 890 

https://doi.org/10.1016/j.cub.2015.08.016 891 

Shadmehr, R., Huang, H. J., & Ahmed, A. A. (2016). A Representation of Effort in Decision-Making 892 

and Motor Control. Current Biology, 26(14), 1929‑1934. 893 

https://doi.org/10.1016/j.cub.2016.05.065 894 

Spedden, M. E., Choi, J. T., Nielsen, J. B., & Geertsen, S. S. (2019). Corticospinal control of normal 895 

and visually guided gait in healthy older and younger adults. Neurobiology of Aging, 78, 29‑41. 896 

https://doi.org/10.1016/j.neurobiolaging.2019.02.005 897 

Stapley, P., Pozzo, T., Cheron, G., & Grishin, A. (1999). Does the coordination between posture and 898 

movement during human whole-body reaching ensure center of mass stabilization? 899 

Experimental Brain Research, 129(1), 134‑146. https://doi.org/10.1007/s002210050944 900 

Strotz, L. C., Saupe, E. E., Kimmig, J., & Lieberman, B. S. (2018). Metabolic rates, climate and 901 

macroevolution : A case study using Neogene molluscs. Proceedings of the Royal Society B: 902 

Biological Sciences, 285(1885), 20181292. https://doi.org/10.1098/rspb.2018.1292 903 

Summerside, E. M., Courter, R. J., Shadmehr, R., & Ahmed, A. A. (2024). Slowing of Movements in 904 

Healthy Aging as a Rational Economic Response to an Elevated Effort Landscape. The Journal 905 

of Neuroscience, 44(15), e1596232024. https://doi.org/10.1523/JNEUROSCI.1596-23.2024 906 

Tanis, D., Calalo, J. A., Cashaback, J. G. A., & Kurtzer, I. L. (2023). Accuracy and effort costs together 907 

lead to temporal asynchrony of multiple motor commands. Journal of Neurophysiology, 129(1), 908 

1‑6. https://doi.org/10.1152/jn.00435.2022 909 

The Lancet. (2009). What is health? The ability to adapt. The Lancet, 373(9666), 781. 910 

https://doi.org/10.1016/S0140-6736(09)60456-6 911 

Thomas, E., Ali, F. B., Tolambiya, A., Chambellant, F., & Gaveau, J. (2023). Too much information is 912 

no information : How machine learning and feature selection could help in understanding the 913 

motor control of pointing. Frontiers in Big Data, 6, 921355. 914 

https://doi.org/10.3389/fdata.2023.921355 915 



Tolambiya, A., Thomas, E., Chiovetto, E., Berret, B., & Pozzo, T. (2011). An Ensemble Analysis of 916 

Electromyographic Activity during Whole Body Pointing with the Use of Support Vector 917 

Machines. PLoS ONE, 6(7), e20732. https://doi.org/10.1371/journal.pone.0020732 918 

Tresch, M. C., Saltiel, P., & Bizzi, E. (1999). The construction of movement by the spinal cord. Nature 919 

Neuroscience, 2(2), 162‑167. https://doi.org/10.1038/5721 920 

Urai, A. E., Doiron, B., Leifer, A. M., & Churchland, A. K. (2022). Large-scale neural recordings call 921 

for new insights to link brain and behavior. Nature Neuroscience, 25(1), 11‑19. 922 

https://doi.org/10.1038/s41593-021-00980-9 923 

Van Voorhies, W. A., & Ward, S. (1999). Genetic and environmental conditions that increase longevity 924 

in Caenorhabditis elegans decrease metabolic rate. Proceedings of the National Academy of 925 

Sciences, 96(20), 11399‑11403. https://doi.org/10.1073/pnas.96.20.11399 926 

Vernazza-Martin, S., Tricon, V., Martin, N., Mesure, S., Azulay, J. P., & Le Pellec-Muller, A. (2008). 927 

Effect of aging on the coordination between equilibrium and movement : What changes? 928 

Experimental Brain Research, 187(2), 255‑265. https://doi.org/10.1007/s00221-008-1301-4 929 

Vu, V. H., Isableu, B., & Berret, B. (2016). On the nature of motor planning variables during arm 930 

pointing movement : Compositeness and speed dependence. Neuroscience, 328, 127‑146. 931 

https://doi.org/10.1016/j.neuroscience.2016.04.027 932 

Ward, N. S. (2006). Compensatory mechanisms in the aging motor system. Ageing Research Reviews, 933 

5(3), 239‑254. https://doi.org/10.1016/j.arr.2006.04.003 934 

Ward, N. S., Swayne, O. B. C., & Newton, J. M. (2008). Age-dependent changes in the neural correlates 935 

of force modulation : An fMRI study. Neurobiology of Aging, 29(9), 1434‑1446. 936 

https://doi.org/10.1016/j.neurobiolaging.2007.04.017 937 

White, O., Gaveau, J., Bringoux, L., & Crevecoeur, F. (2020). The gravitational imprint on 938 

sensorimotor planning and control. Journal of Neurophysiology, 124(1), 4‑19. 939 

https://doi.org/10.1152/jn.00381.2019 940 

Wickramarachchi, B., Torabi, M. R., & Perera, B. (2023). Effects of Physical Activity on Physical 941 

Fitness and Functional Ability in Older Adults. Gerontology & Geriatric Medicine, 9, 942 

23337214231158476. https://doi.org/10.1177/23337214231158476 943 

Winter, D. (2009). Biomechanics and Motor Control of Human Movement. John Wiley & Sons, Inc. 944 

https://doi.org/10.1002/9780470549148 945 

Wolpe, N., Ingram, J. N., Tsvetanov, K. A., Kievit, R. A., Henson, R. N., Wolpert, D. M., Cam-CAN, 946 

Brayne, C., Bullmore, E., Calder, A., Cusack, R., Dalgleish, T., Duncan, J., Matthews, F. E., 947 

Marslen-Wilson, W., Shafto, M. A., Campbell, K., Cheung, T., Davis, S., … Rowe, J. B. 948 

(2016). Ageing increases reliance on sensorimotor prediction through structural and functional 949 

differences in frontostriatal circuits. Nature Communications, 7(1), 13034. 950 

https://doi.org/10.1038/ncomms13034 951 

Yamamoto, S., & Kushiro, K. (2014a). Direction-dependent differences in temporal kinematics for 952 

vertical prehension movements. Experimental Brain Research, 232(2), 703‑711. 953 

https://doi.org/10.1007/s00221-013-3783-y 954 

Yamamoto, S., & Kushiro, K. (2014b). Direction-dependent differences in temporal kinematics for 955 

vertical prehension movements. Experimental Brain Research, 232(2), 703‑711. 956 

https://doi.org/10.1007/s00221-013-3783-y 957 

Zalewski, C. (2015). Aging of the Human Vestibular System. Seminars in Hearing, 36(03), 175‑196. 958 

https://doi.org/10.1055/s-0035-1555120 959 

Zhang, W., & Radhakrishnan, K. (2018). Evidence on selection, optimization, and compensation 960 

strategies to optimize aging with multiple chronic conditions : A literature review. Geriatric 961 

Nursing, 39(5), 534‑542. https://doi.org/10.1016/j.gerinurse.2018.02.013 962 

Zhao, E., Tranovich, M. J., & Wright, V. J. (2014). The role of mobility as a protective factor of 963 

cognitive functioning in aging adults : A review. Sports Health, 6(1), 63‑69. 964 

https://doi.org/10.1177/1941738113477832 965 
 966 




