Submit a preprint

Latest recommendations

IdTitle * Authors * Abstract * Picture * Thematic fields * Recommender▲ReviewersSubmission date
25 Oct 2024
article picture

Feedback-driven adaptation of gravity-related sensorimotor control to an upside-down posture

An inverse gravity experiment supports the theory of an internal gravity model in the central nervous system

Recommended by ORCID_LOGO based on reviews by Jan Hondzinski and 3 anonymous reviewers

The study by Barbusse et al. (2024) investigated how motor control of arm movements is affected by reversed gravity. It is commonly assumed that the central nervous system contains an internal gravity model, and that this model is used to optimize movements to minimize effort under the influence of gravity (e.g., Berret et al., 2008). Previously, the effect of decreased and increased gravity was investigated, and it was shown that people were able to adapt to this novel environment in a matter of minutes or days (e.g., Gaveau et al., 2011). Therefore, the authors investigated the effect of inverse gravity on motor control of arm movements.

In this study, an experiment was performed in which participants were placed in an inversion table and asked to perform as many pointing movements with their shoulder as possible in 12 blocks. In each block, the inversion table was placed either in the head-up or head-down position, and the position was switched every 35 seconds, starting from the head-up position. After 4 blocks, a 90 second break was taken. It was found that movement duration and amplitude did not significantly differ between both orientations. An analysis of the difference in time to peak acceleration, time to peak velocity, and time to peak deceleration between upward and downward movements revealed no significant difference for the peak acceleration, while for the peak velocity, the time difference was significantly smaller in the head-down than the head-up position, and for the peak deceleration, the time difference changed in the head-down position with the number of blocks, reaching a value more similar to the head-up (baseline) position.

The time to peak acceleration did not reverse for the head-down position, which showed that the central nervous system is not able to take advantage of gravity when it is placed in a head-down position, since it does not take advantage of the “free” acceleration provided by gravity. A longer exposure to inverse gravity might allow the body to adapt and re-optimize its internal gravity model to the new situation. The time difference was significantly different for the deceleration, but not for acceleration, which indicates that the movement was adapted mainly by feedback control, but that feedforward control remained largely the same. This further supports the conclusion that the central nervous system had not yet adapted its internal gravity model, and that re-optimization starts with adapting feedback control (Izawa et al., 2008). An important limitation is the discomfort that is experienced in the head-down position, which not only changes gravity, but also created negative physiological responses.

References

Denis Barbusse, Sarah Amoura, Jérémie Gaveau, Olivier White (2024) Feedback-driven adaptation of gravity-related sensorimotor control to an upside-down posture. OSF preprints, ver.3 peer-reviewed and recommended by PCI Health & Movement Sciences. https://doi.org/10.17605/OSF.IO/D9JPF.

Berret B, Darlot C, Jean F, Pozzo T, Papaxanthis C, Gauthier JP (2008) The inactivation principle: mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements. PLoS computational biology, 4, e1000194. https://doi.org/10.1371/journal.pcbi.1000194

Gaveau J, Paizis C, Berret B, Pozzo T, Papaxanthis C (2011) Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning. Journal of Neurophysiology, 106, 620–629. https://doi.org/10.1152/jn.00081.2011

Izawa J, Rane T, Donchin O, Shadmehr R (2008) Motor adaptation as a process of reoptimization. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28, 2883–2891. https://doi.org/10.1523/JNEUROSCI.5359-07.2008

Feedback-driven adaptation of gravity-related sensorimotor control to an upside-down postureDenis Barbusse, Sarah Amoura, Jérémie Gaveau, Olivier White<p>The ability to move is a vital and essential feature of human existence. &nbsp;We are experts at producing a variety of movements and have refined their control through evolution. As gravity is a major feature of our every-day environment, we h...Biomechanics, Sensorimotor ControlAnne KoelewijnAnonymous, Anonymous2023-12-14 11:47:30 View
05 Jul 2024
article picture

On the specifics of valuing effort: a developmental and a formalized perspective on preferences for mental and physical effort

Is effort evaluation domain-specific or general?

Recommended by ORCID_LOGO based on reviews by James Steele, Ines Pfeffer and 1 anonymous reviewer

The law of least effort suggests that, certis paribus, people tend to exert as little effort as possible when engaged in a goal-directed task (Cheval & Boisgontier, 2021). At the same time, however, large interindividual differences in the processing of effort have been observed, suggesting that effort per se can sometimes be valued positively (Inzlicht et al., 2018).  However, until the present study by Wolff et al. (2024), all previous studies had largely ignored whether these individual differences in the valuation of effort might depend on the context (mental versus physical), i.e., in layman's terms, we do not know whether people value any effort or whether these preferences are specific to the mental and/or physical domain. The aim of the present study (Wolff et al., 2024) was to answer this question on the basis of two independent studies.

Study 1 (N = 39) used a binary decision task to measure preferences for allocating mental versus physical effort and showed that people differ markedly in their preferred allocation of effort. Crucially, a disposition to value mental effort (as assessed by the Need for Cognition Scale) was associated with a higher preference for mental effort, whereas a disposition to value physical effort (as assessed by the recently developed Value of Physical Effort Scale) was associated with a preference for physical effort.

Study 2 (N = 300 students) confirmed the robustness of the findings and showed that the tendency to value mental effort was associated with better grades in math (but showed no evidence of such an association in sport), whereas the tendency to value physical effort was associated with better grades in sport (but showed no evidence of such an association in math). Furthermore, the study extended these findings by showing that valuing physical effort was associated with less boredom in sports, whereas valuing mental effort was associated with less boredom in math.

In summary, the results of this research provide the first evidence suggesting that the valuation of effort is domain-specific rather than general. This finding paves the way for future research aimed at improving our understanding of the valuation of physical or mental effort. This article makes an important contribution to the knowledge of the key issues surrounding whether effort valuation is domain-specific or general.

Since all reviewers have indicated that they are satisfied with the authors' revision, which accurately and comprehensively addresses the reviewers' and my comments, it is my pleasure to recommend this preprint.

 
References

Cheval B, Boisgontier MP. The theory of effort minimization in physical activity. Exerc Sport Sci Rev. 2021;49(3):168-178. https://doi.org/10.1249/JES.0000000000000252

Inzlicht M, Shenhav A, Olivola CY. The effort paradox: effort is both costly and valued. Trends Cogn Sci. 2018;22(4):337-349. https://doi.org/10.1016/j.tics.2018.01.007

Wolff W, Stähler J, Schüler J, Bieleke M. On the specifics of valuing effort: a developmental and a formalized perspective on preferences for mental and physical effort. PsyArXiv, version 3. Peer-reviewed and recommended by Peer Community in Health and Movement Sciences. 
https://doi.org/10.31234/osf.io/ycvxw
On the specifics of valuing effort: a developmental and a formalized perspective on preferences for mental and physical effortWanja Wolff, Johanna Stähler, Julia Schüler, Maik Bieleke<p>Effort is instrumental for goal pursuit. But its exertion is aversive and people tend to invest as little effort as possible. Contrary to this principle of least effort, research shows that effort is sometimes treated as if it was valuable in i...Exercise & Sports Psychology, Physical EducationBoris Cheval2023-09-06 09:05:07 View
23 Sep 2024
article picture

Development and validation of the Value of Physical Effort (VoPE) scale

Capturing Individual Differences in the Valuation of Physical Effort

Recommended by ORCID_LOGO based on reviews by Silvio Maltagliati and Erik Bijleveld
Physical effort has long been viewed as an aversive experience that people generally seek to avoid, giving rise to the so-called "law of least effort," which posits that, other things being equal, people tend to minimize effort when engaging in goal-directed tasks. This principle has recently been applied to physical activity behavior (Cheval & Boisgontier, 2021). 
 
However, beyond this general view of physical effort as an aversive experience to be avoided, substantial individual differences in the valuation of physical effort have been observed. This suggests that some individuals may actually evaluate physical effort positively. Contrary to the law of least effort, these individuals may prefer behavioral alternatives that require more effort, all else being equal (Inzlicht et al., 2018). Until the development of the Physical Effort Scale (Cheval et al., 2024) and the present work by Bieleke et al. (2024), no formal scale existed to capture such individual differences in the valuation of physical effort. The primary goal of the present study was to design, develop, and validate such a scale.
 
To achieve this goal, the authors conducted three independent studies (total N = 1,364) to establish the psychometric properties of the Value of Physical Effort (VoPE) scale (Bieleke et al., 2024). Across these studies, using both cross-sectional and longitudinal designs and a variety of statistical techniques (e.g., psychometric network analysis, elastic net regression), results indicated that the VoPE scale has robust associations with physical activity behaviors, strong test-retest reliability, and captures unique variance in predicting exercise behaviors. Taken together, these findings suggest that the VoPE scale is a valid and reliable measure of individual differences in the valuation of physical effort.
 
References

Bieleke M, Stähler J, Wolff W, Schüler J. Development and validation of the Value of Physical Effort (VoPE) scale.PsyArXiv. 2023, version 5. https://doi.org/10.31234/osf.io/pqw26. Peer-reviewed and recommended by Peer Community in Health and Movement Sciences. https://doi.org/10.24072/pci.healthmovsci.100115

Cheval B, Boisgontier MP. The theory of effort minimization in physical activity. Exerc Sport Sci Rev. 2021;49(3):168-178. https://doi.org/10.1249/JES.0000000000000252

Cheval B, Maltagliati S, Courvoisier DS, Marcora S, Boisgontier MP.Development and validation of the physical effort scale (PES). Psychology of Sport and Exercise. 2024;72:102607. https://doi.org/10.1016/j.psychsport.2024.102607

Inzlicht M, Shenhav A, Olivola CY. The effort paradox: effort is both costly and valued. Trends Cogn Sci. 2018;22(4):337-349. https://doi.org/10.1016/j.tics.2018.01.007
Development and validation of the Value of Physical Effort (VoPE) scaleMaik Bieleke, Johanna Stähler, Wanja Wolff, Julia Schüler<p>Physical effort has instrumental value because it helps people attain their goals. Growing evidence suggests that people might also experience the exertion of effort itself as valuable. To test this idea, we developed and examined the 4-item Va...Exercise & Sports Psychology, Physical ActivityBoris Cheval Erik Bijleveld, Silvio Maltagliati2024-04-10 11:44:26 View
18 Feb 2024
article picture

Interlimb coordination in Parkinson’s Disease is minimally affected by a visuospatial dual task

A recommendation of ‘Interlimb coordination in Parkinson’s Disease is minimally affected by a visuospatial dual task’

Recommended by ORCID_LOGO based on reviews by Nicholas D'Cruz and 1 anonymous reviewer

Effective gait fundamentally requires spatial and temporal coordination of upper and lower limbs. Individuals with Parkinson’s disease (PD) often exhibit impaired coordination, leading to adverse events such as freezing of gait and falls (Plotnik et al. 2008). Despite their significance, the current literature lacks depth in our understanding of this characteristic, especially their adaptation to changing task demands and symptom laterality. Exploring these relationships may provide new insights into PD gait and facilitate the evaluation of potential treatments. With these objectives in mind, the present study conducted by Hill & Nantel (2024) includes 17 participants with mild to moderate PD and focuses on coordination within and between the more and less affected sides during both single and dual gait tasks. In the study, spatial coordination, assessed by range of motion, range of motion variability, and peak flexion for the shoulder and hip joints, was examined alongside temporal coordination, which was evaluated using the phase coordination index and variability of continuous relative phase.

Their analysis reveals that, due to dual tasking, only the shoulder range of motion and peak flexion decreased within the least affected side, adding to the existing knowledge on arm swing impairments in early-stage PD (Navarro-López et al. 2022). However, no significant difference was observed between the more and less affected sides. Hip range of motion showed dual task-related differences between sides, while lower intralimb phase variability did not. The primary strength of the article lies in its attempt to systematically explore these differences in PD. As the authors pointed out, to interpret the clinical significance of these differences as well as the null findings on temporal coordination, it may be necessary to include a healthy control group or other comparison groups, such as individuals with severe PD. When interpreting these results, readers may also pay attention to the methodological choices, such as the patient-reported most affected side and the choice of dual task. Overall, the study will be of interest to researchers studying intra- and inter-limb coordination during gait in PD.   

References

Plotnik, M., & Hausdorff, J. M. (2008). The role of gait rhythmicity and bilateral coordination of stepping in the pathophysiology of freezing of gait in Parkinson's disease. Movement disorders: official journal of the Movement Disorder Society, 23(S2), S444-S450. https://doi.org/10.1002/mds.21984 

Hill, A., & Nantel, J. (2024). Interlimb coordination in Parkinson’s Disease is minimally affected by a visuospatial dual task. bioRxiv, ver. 3 peer-reviewed and recommended by Peer Community in Health and Movement Science. https://doi.org/10.1101/2022.07.15.500215 

Navarro-Lopez, V., Fernandez-Vazquez, D., Molina-Rueda, F., Cuesta-Gomez, A., Garcia-Prados, P., del-Valle-Gratacos, M., & Carratala-Tejada, M. (2022). Arm-swing kinematics in Parkinson's disease: a systematic review and meta-analysis. Gait & Posture, 98, 85-95. https://doi.org/10.1016/j.gaitpost.2022.08.017 

Interlimb coordination in Parkinson’s Disease is minimally affected by a visuospatial dual taskAllen Hill, Julie Nantel<p style="text-align: justify;">Parkinson’s disease (PD) leads to reduced spatial and temporal interlimb coordination during gait as well as reduced coordination in the upper or lower limbs. Multi-tasking when walking is common during real-world a...Biomechanics, Health & Disease, Sensorimotor ControlDeepak Ravi2023-10-13 21:54:15 View
24 Aug 2023
article picture

Comparing habit-behaviour relationships for organised versus leisure time physical activity

Habit-behaviour relationships in organised and leisure-time physical activity

Recommended by ORCID_LOGO based on reviews by 2 anonymous reviewers

Despite public health campaigns, achieving recommended physical activity levels remains challenging. Investigating the factors influencing physical activity is essential for effective promotion. Habit strength is known to correlate with physical activity (Hagger, 2019), making habit formation a key intervention target. Newman et al. (2023) expand current knowledge on physical activity and habit strength. They investigate if habit strength and its association with behavior differ between organized and leisure-time physical activities. Given the broad definition of physical activity and individual differences in preferences, studying habit's influence on varied activities is crucial. The cross-sectional survey, spanning the UK, USA, Australia, and Switzerland, involves 120 young adults (mean age = 25) engaged in organized sports. Although self-report measures are used, excluding commuting and occupational activity, the study yields intriguing results: Authors find significant habit strength differences between organized sports and leisure-time activities, indicating potential distinctions in habit formation drivers. Investigating factors establishing habits in organized sports could inform broader interventions. Remarkably, the impact of habits on behavior is consistent across both activity types, suggesting a universal role of habits. Further analysis reveals stronger habit strength in team sports versus individual ones, with no behavior association difference. Diverse habit strength in organized versus leisure-time activities underscores the need for focused research. Understanding unique aspects of team sports that promote habituation can reshape interventions, aligning leisure activities with organized sports' characteristics.

References

Hagger, M. S. (2019). Habit and physical activity: Theoretical advances, practical implications, and agenda for future research. Psychology of Sport and Exercise, 42, 118–129. https://doi.org/10.1016/j.psychsport.2018.12.007

Newman, K., Forestier, C., Cheval, B., Zenko, Z., De Chanaleilles, M., Gardner, B., & Rebar, A. L. (2023). Comparing habit-behaviour relationships for organised versus leisure time physical activity. OSF Preprints, 1–11, version 4, peer-reviewed and recommended by Peer Community in Health & Movement Sciences. https://doi.org/10.31219/osf.io/x5e9d

 

Comparing habit-behaviour relationships for organised versus leisure time physical activityKaterina Newman, Cyril Forestier, Boris Cheval, Zackary Zenko, Margaux de Chanaleilles, Benjamin Gardner, Amanda L. Rebar<p>Evidence shows that people with strong physical activity habits tend to engage in more physical activity than those with weaker habits, but little is known about how habit influences specific types of physical activity. This study aimed to test...Health & Disease, Physical ActivityEleftheria Giannouli2023-03-01 08:59:18 View
17 Nov 2024
article picture

Change in exercise capacity, physical activity and motivation for physical activity at 12 months after a cardiac rehabilitation program in coronary heart disease patients: a prospective, monocentric and observational study

A prospective observational study examining changes in exercise capacity, physical activity, and motivation for physical activity 12 months after a cardiac rehabilitation programme in patients with coronary heart disease

Recommended by ORCID_LOGO based on reviews by Géraldine Escriva-Boulley, Baraa Al-Khazraji and 1 anonymous reviewer

Exercise capacity is recognised as a strong predictor of mortality and cardiovascular morbidity in both healthy individuals and patients with coronary heart disease (Novaković et al., 2022). Accordingly, exercise-based cardiac rehabilitation is recommended as an effective secondary preventive intervention (Task Force Members et al., 2016; Anderson et al., 2016). While earlier studies generally focused on changes in exercise capacity during or immediately after rehabilitation (Uddin et al., 2016), recent research has emphasised the importance of physical activity trajectories on mortality in patients with coronary heart disease (Gonzalez-Jaramillo et al., 2022). This highlights the need to understand changes in exercise capacity and physical activity following the rehabilitation phase.

This study specifically explored changes in exercise capacity (assessed using the six-minute walking test) and physical activity (assessed using the International Physical Activity Questionnaire-Short Form) one year after a cardiac rehabilitation programme in patients with coronary heart disease. Additionally, the authors examined changes in motivation for physical activity over the 12 months following rehabilitation.

Within the limitations of its observational and monocentric nature, the study presents important findings that can inform future research, generate hypotheses, and guide the design of targeted trials aimed at improving or maintaining exercise capacity and physical activity levels after rehabilitation. The exploration of potential barriers to physical activity 12 months after rehabilitation could inform strategies to increase participation in physical activity post-rehabilitation, thereby improving survival (Moholdt et al., 2018).

This study is well-conducted and clearly presented. The authors' interpretation is balanced and consistent with the study's design and analysis. As noted by one of the reviewers, retention in cardiac rehabilitation studies is challenging, and the authors have done a commendable job in retaining participants. They have also addressed all the reviewers' concerns properly and accurately. I am pleased to recommend this preprint.

References
- Novaković M, Novak T, Vižintin Cuderman T, Krevel B, Tasič J, Rajkovič U, Fras Z, Jug B. Exercise capacity improvement after cardiac rehabilitation following myocardial infarction and its association with long-term cardiovascular events. Eur J Cardiovasc Nurs. 2022;21(1):76-84. https://doi.org/10.1093/eurjcn/zvab015
- Task Force Members, Piepoli MF, Hoes AW, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts): Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur J Prev Cardiol. 2016;23(11):NP1-NP96. https://doi.org/10.1177/2047487316653709
- Anderson L, Oldridge N, Thompson DR, et al. Exercise-Based Cardiac Rehabilitation for Coronary Heart Disease: Cochrane Systematic Review and Meta-Analysis. J Am Coll Cardiol. 2016;67(1):1-12. https://doi.org/10.1016/j.jacc.2015.10.044
- Uddin J, Zwisler AD, Lewinter C, et al. Predictors of exercise capacity following exercise-based rehabilitation in patients with coronary heart disease and heart failure: A meta-regression analysis. Eur J Prev Cardiol. 2016;23(7):683-693. https://doi.org/10.1177/204748731560431
- Gonzalez-Jaramillo N, Wilhelm M, Arango-Rivas AM, Gonzalez-Jaramillo V, Mesa-Vieira C, Minder B, Franco OH, Bano A. Systematic review of physical activity trajectories and mortality in patients with coronary artery disease. J Am Coll Cardiol. 2022;79:1690-1700. https://doi.org/10.1016/j.jacc.2022.02.036
- Moholdt T, Lavie CJ, Nauman J. Sustained physical activity, not weight loss, associated with improved survival in coronary heart disease [published correction appears in J Am Coll Cardiol. 2018;71(13):1499. doi: 10.1016/j.jacc.2018.03.013]. J Am Coll Cardiol. 2018;71(10):1094-1101. https://doi.org/10.1016/j.jacc.2018.01.011​​​​
- Da Ros Vettoretto P, Bouffart AA, Gourronc Y, Baron AC, Gaumé M, Congnard F, Noury-Desvaux B, de Müllenheim PY (2024) Change in exercise capacity, physical activity and motivation for physical activity at 12 months after a cardiac rehabilitation program in coronary heart disease patients: a prospective, monocentric and observational study. HAL, ver.3, peer-reviewed and recommended by PCI Health & Movement Sciences. https://hal.science/hal-04510104v3  
Change in exercise capacity, physical activity and motivation for physical activity at 12 months after a cardiac rehabilitation program in coronary heart disease patients: a prospective, monocentric and observational studyPaul Da Ros Vettoretto, Anne-Armelle Bouffart, Youna Gourronc, Anne-Charlotte Baron, Marie Gaumé, Florian Congnard, Bénédicte Noury-Desvaux, Pierre-Yves de Müllenheim<p>Exercise capacity (EC) and physical activity (PA) are relevant predictors of mortality in patients with coronary heart disease (CHD) but the CHD-specific long-term trajectories of these outcomes after a cardiac rehabilitation (CR) program are n...Health & Disease, Physical Activity, RehabilitationFranco Milko Impellizzeri2024-03-22 10:59:07 View
05 Feb 2025
article picture

Cigarette smoke exposure as a potential risk factor for sleep problems in pregnant women

Have you ever wondered about the relationship between active/passive smoking and sleep in pregnant women? 

Recommended by ORCID_LOGO based on reviews by Silvio Maltagliati, Florian Chouchou and Jean-Philippe Chaput

Pregnancy has been shown to affect the quality, duration, and pattern of sleep (Paavonen et al., 2017; Reid et al., 2017). These changes have important implications, as insufficient sleep is associated with health problems and complications during labor. In line with studies investigating the general population, a few studies focused on pregnant smokers and have also shown a prevalence of sleep abnormalities (e.g., Danilov et al., 2022; Lange et al., 2018; Paavonen et al., 2017). Studies examining the role of passive smoking on sleep are rare, be it in the general population or in pregnant women. 

The aim of the Ciochon et al. study was to investigate the relationship between active or passive smoking and three types of sleep problems during pregnancy: difficulty falling asleep, difficulty staying asleep, and waking up too early. The authors hypothesized that pregnant women's exposure to smoking (active and passive) would increase their risk of sleep problems during pregnancy.

Participants were part of a larger study: the Corona Mums project, which included 3365 pregnant women from Poland, aged 18 to 43 years. These women completed an online questionnaire during the COVID-19 pandemic, from May 2020 to September 2021. The authors conducted multivariate logistic regressions that included the following control variables: socio-demographic, pregnancy-related variables, and psychological variables.

The results of the study showed that passive smoking is a risk factor for waking up too early, but they showed no evidence suggesting that active or passive smoking was related to any of the other sleep variables. The authors highlighted the roles of control variables included in the models. Specifically, sleep difficulties were related to age, place of residence, education, level of anxiety and depression in pregnant women, and the presence of nausea or vomiting. Further, in all the models, the level of anxiety, depression, and trimester of pregnancy (3rd trimester in comparison to 1st and 2nd) were significantly related to the risk of occurrence of sleep problems.

While only one of the six examined associations showed statistical significance, the findings are still useful in highlighting potential risks associated with passive smoking and sleep disturbances during pregnancy. The study also underscores the need for more comprehensive investigations, including direct measures of sleep quality, such as actigraphy or polysomnography, which are necessary to better understand the underlying mechanisms and to confirm the potential impacts of both active and passive smoking on sleep during pregnancy.

References
- Ciochoń, A., Balwicki, Ł., Klimek, M., Danel, D., Apanasewicz-Grzegorczyk, A., Ziomkiewicz, A., Galbarczyk, A., & Marcinkowska, U. M. (2025). Cigarette smoke exposure as a potential risk factor for sleep problems in pregnant women. Zenodo, ver.4 peer-reviewed and recommended by PCI Health & Movement Sciences. https://doi.org/10.5281/zenodo.14777983
- Danilov, M., Issany, A., Mercado, P., Haghdel, A., Muzayad, J. K., & Wen, X. (2022). Sleep quality and health among pregnant smokers. Journal of Clinical Sleep Medicine, 18(5), 1343–1353. https://doi.org/10.5664/jcsm.9868
- Lange, S., Probst, C., Rehm, J., & Popova, S. (2018). National, regional, and global prevalence of smoking during pregnancy in the general population: a systematic review and meta-analysis. Lancet. Global Health, 6(7), e769–e776. https://doi.org/10.1016/S2214-109X(18)30223-7
- Paavonen, E., Saarenpää-Heikkilä, O., Pölkki, P., Kylliäinen, A., Porkka-Heiskanen, T., & Paunio, T. (2017). Maternal and paternal sleep during pregnancy in the Child-sleep birth cohort. Sleep Medicine, 29, 47–56. https://doi.org/10.1016/j.sleep.2016.09.011 
- Reid, K. J., Facco, F. L., Grobman, W. A., Parker, C. B., Herbas, M., Hunter, S., Silver, R. M., Basner, R. C., Saade, G. R., Pien, G. W., Manchanda, S., Louis, J. M., Nhan-Chang, C. L., Chung, J. H., Wing, D. A., Simhan, H. N., Haas, D. M., Iams, J., Parry, S., & Zee, P. C. (2017). Sleep during pregnancy: the nuMoM2b Pregnancy and Sleep Duration and Continuity Study. Sleep, 40(5), zsx045. https://doi.org/10.1093/sleep/zsx045 
Cigarette smoke exposure as a potential risk factor for sleep problems in pregnant womenAleksandra Ciochoń, Łukasz Balwicki, Magdalena Klimek, Dariusz P. Danel, Anna Apanasewicz, Anna Ziomkiewicz, Andrzej Galbarczyk, Urszula M. Marcinkowska<p>Abstract</p> <p>Cigarette smoking and exposure to cigarette smoke during pregnancy have detrimental effects on the health of expectant mothers, increasing the likelihood of respiratory diseases or infections. Due to the exciting effect of smok...Health & DiseaseGéraldine Escriva-Boulley2024-05-29 12:18:57 View
09 Jan 2025
article picture

Improved accuracy of the whole body Center of Mass position through Kalman filtering

 Improved estimation of the whole-body center of mass, a step ahead in biomechanical analyses of balance control.  

Recommended by ORCID_LOGO based on reviews by Maarten Afschrift, Guillaume Durandeau and 1 anonymous reviewer
Estimation of the whole-body center of mass (CoM) is crucial in many biomechanical studies of human and animal movement. It is especially important in studies on the control of balance. For example, it has been assumed that sensory information is used to correct the horizontal position and velocity of the CoM (van Dieën et al., 2024; Wang and Srinivasan, 2014; Welch and Ting, 2008), to stabilize standing and walking against gravity. The studies cited have used more-or-less sophisticated estimates of the CoM, derived from kinematic, in some cases combined with anthropometric data, to predict motor outputs. These studies have provided support for the notion that the position and velocity of the CoM are controlled. This holds promise for the diagnosis of the quality of such feedback control as a cause of balance impairments and fall risk. However, such applications will suffer from errors in outcomes at the individual level, for example due to a poor fit of the anthropometrical model to a certain individual.
 
Le Mouel (Le Mouel, 2025) presents a novel approach to estimate the position of the CoM. The author proposes that CoM estimation can be improved by optimally combining kinematic and kinetic data through a Kalman filter. The Kalman-filter-based method was indeed shown to effectively addresses the inherent limitations of both kinematic and kinetic methods used in isolation. The author used an innovative approach to validate CoM estimates, based on incorrect CoM estimates violating Newton's laws of motion. The new method substantially reduced errors compared to conventional approaches based on kinematic (and anthropometric) or kinetic data only. The paper presents a clear and comprehensive description of the method and code implementation is provided such that the method can be easily adopted by colleagues in the field. The author also shows how the new method improves the analysis of stabilizing feedback control of walking, demonstrating the promise it holds for the analysis of balance control. 
 
The method was tested on a small data set and further testing, preferably with participant pool showing large variance in anthropometrical properties, seems warranted. This may also lead to further improvement of the approach. For example, the anthropometrical model used could be refined by using regression equations that take into account segment circumferences of the individual tested (Zatsiorsky, 2002) or even by using individual imaging data. However, the proposed optimal combination of kinematic and kinetic data is likely to become a cornerstone of future methods for accurate CoM estimation.
 

References
- Le Mouel, C., 2025. Improved accuracy of the whole body Center of Mass position through Kalman filtering. bioRxiv, ver.3 peer-reviewed and recommended by PCI Health & Movement Sciences. https://doi.org/10.1101/2024.07.24.604923
- van Dieën, J.H., Bruijn, S.M., Afschrift, M., 2024. Assessment of stabilizing feedback control of walking: a tutorial. J Electromyogr Kinesiol 78, 102915. https://doi.org/10.1016/j.jelekin.2024.102915
- Wang, Y., Srinivasan, M., 2014. Stepping in the direction of the fall: the next foot placement can be predicted from current upper body state in steady-state walking. Biol Lett 10(9), 20140405. https://doi.org/ 10.1098/rsbl.2014.0405
- Welch, T.D., Ting, L.H., 2008. A feedback model reproduces muscle activity during human postural responses to support-surface translations. J Neurophysiol 99, 1032-1038. https://doi.org/ 10.1152/jn.01110.2007
- Zatsiorsky, V., 2002. Kinetics of Human Motion. Human Kinetics, Champaign, Illinois.
Improved accuracy of the whole body Center of Mass position through Kalman filtering Charlotte Le Mouel<p>The trajectory of the body center of mass (CoM) is critical for evaluating balance. The position of the CoM can be calculated using either kinematic or kinetic methods. Each of these methods has its limitations, and it is difficult to evaluate ...BiomechanicsJaap van Dieen2024-07-25 10:58:37 View
15 Jun 2024
article picture

Kinesiophobia and physical activity: A systematic review and meta-analysis

Evidence of the Association between Kinesiophobia and Physical Inactivity

Recommended by ORCID_LOGO based on reviews by Paquito Bernard and 1 anonymous reviewer

This article (Goubran et al., 2024) presents a comprehensive systematic review and meta-analysis examining the relationship between kinesiophobia and physical activity. The inclusion of multiple health conditions and diverse measures of physical activity and kinesiophobia provides a broad perspective on the issue. 

Kinesiophobia (i.e., an excessive, irrational, and debilitating fear of movement) is thought to contribute to negative affective associations towards physical activity and avoidance behaviors, leading to decreased engagement in physical activity. Thus, the relationship between kinesiophobia and physical activity merits further investigation, particularly in health conditions where physical activity has a preventative and/or therapeutic role. 

The results of this meta-analysis (k = 83, n = 12,278) indicate a small-to-moderate negative correlation between kinesiophobia and physical activity (r = −0.19; 95% CI: −0.26 to −0.13; I2 = 85.5%; p < 0.0001.) Substantial heterogeneity and publication bias were noted, but p-curve analysis suggested true effects. Notably, this finding was consistent across studies using both self-report and objective device-based measures, and there was no evidence of a moderating effect of different measurement instruments or physical activity outcomes. 

Subgroup analyses revealed that the negative association between kinesiophobia and physical activity is significant in patients with cardiac, rheumatologic, neurologic, or pulmonary conditions but not in those with chronic or acute pain. This latter finding underscores the need to distinguish kinesiophobia from pain. Understanding that the fear of pain, injury, or aggravating an underlying condition, rather than actual pain, is associated with physical inactivity is important to consider when developing interventions to promote physical activity. Tailored interventions that address kinesiophobia specific to different health conditions could enhance physical activity levels and improve health outcomes. Further research is needed to explore the mechanisms underlying kinesiophobia and evaluate the efficacy of targeted interventions to mitigate its impact. 

This article makes an important contribution to our understanding of the relationship between kinesiophobia and physical activity. It provides evidence that fear of movement can be a barrier to physical activity in certain health conditions and highlights the need for condition-specific approaches to address this issue. This work is highly relevant for clinicians, researchers, and public health policymakers aiming to improve physical activity levels and overall health outcomes in a variety of populations.

 

References

Goubran, M., Farajzadeh, A., Lahart, I.M., Bilodeau, M. & Boisgontier, M.P. (2024). Physical activity and kinesiophobia: A systematic review and meta-analysis. MedRxiv, version. 3 peer-reviewed and recommended by Peer Community in Health and Movement Science. https://doi.org/10.1101/2023.08.17.23294240

Kinesiophobia and physical activity: A systematic review and meta-analysisGoubran M, Farajzadeh A, Lahart IM, Bilodeau M, Boisgontier MP<p><strong>Objective. </strong>Physical activity contributes to the primary, secondary, and tertiary prevention of multiple diseases. However, in some patients, an excessive, irrational, and debilitating fear of movement (i.e., kinesiophobia) is t...Exercise & Sports Psychology, Health & Disease, Physical Activity, RehabilitationJasmin Hutchinson Paquito Bernard2023-08-21 07:07:46 View
30 Aug 2024
article picture

Comparing arm to whole-body motor control disambiguates age-related deterioration from compensation

Aging of upper-limb and whole-body movement efficiency

Recommended by ORCID_LOGO based on reviews by Florian Monjo, Pierre Morel, Zack van Allen and 1 anonymous reviewer

This study by Mathieu et al. (2024) builds on previous computational research showing that human arm movements use gravity to save energy and be more efficient (Berret et al., 2008; Crevecoeur et al., 2009; Gaveau et al., 2014, 2021), as well as on experimental research showing that kinematic and electromyographic markers are directly related to this energetic efficiency (Gaveau et al., 2016). 
 
The primary objective of this study by Mathieu et al. (2024) was to compare the effect of age on movement efficiency in an upper limb task and three whole-body tasks. These two types of tasks are often studied independently in the literature. Therefore, testing them in the same study allows the generalizability of the effect of age on movement efficiency to be examined. Electromyographic and kinematic patterns were compared in younger (n = 20) and older adults (n = 24), and movement efficiency was assessed using an index based on the activity of antigravity muscles. Results suggest that the effect of age is dependent on the type of movement. Specifically, older adults used gravity less than younger adults when performing whole-body movements, whereas no such age effect was evidenced when performing arm movements. The authors interpret this effect as an adaptation of whole-body movement strategies that compensates for age-related changes in body structures and functions to stabilize postural balance.
 
These findings contribute to the literature on postural control and how it differs from movement control that does not include the constraint of maintaining body balance, i.e., avoiding falls. Specifically, these results suggest that our brain implements a movement strategy specific to movements that require body balance, and that the efficiency of this strategy is affected by age. Further research would help to determine whether this efficiency, although altered, remains optimal throughout the age-related decline of body systems, or whether priorities change across aging, with stability and fall avoidance becoming more valued than energetic efficiency.​
 
References
- Berret, B., Darlot, C., Jean, F., Pozzo, T., Papaxanthis, C., & Gauthier, J. P. (2008). The inactivation principle: mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements. PLoS Computational Biology, 4(10), e1000194. https://doi.org/10.1371/journal.pcbi.1000194
- Crevecoeur, F., Thonnard, J. L., & Lefèvre, P. (2009). Optimal integration of gravity in trajectory planning of vertical pointing movements. Journal of Neurophysiology, 102(2), 786–796. https://doi.org/10.1152/jn.00113.2009
- Gaveau, J., Berret, B., Angelaki, D. E., & Papaxanthis, C. (2016). Direction-dependent arm kinematics reveal optimal integration of gravity cues. eLife, 5, e16394. https://doi.org/10.7554/eLife.16394
- Gaveau, J., Grospretre, S., Berret, B., Angelaki, D. E., & Papaxanthis, C. (2021). A cross-species neural integration of gravity for motor optimization. Science Advances, 7(15), eabf7800. https://doi.org/10.1126/sciadv.abf7800
- Mathieu, R., Chambellant, F., Thomas, E., Papaxanthis, C., Hilt, P., Manckoundia, P., Mourey, F., & Gaveau J. (20024). Comparing arm to whole-body motor control disambiguates age-related deterioration from compensation. bioRxiv, version 5. Peer-reviewed and recommended by Peer Community in Health and Movement Sciences. https://doi.org/10.1101/2024.02.16.576683

Comparing arm to whole-body motor control disambiguates age-related deterioration from compensationRobin Mathieu, Florian Chambellant, Elizabeth Thomas, Charalambos Papaxanthis, Pauline Hilt, Patrick Manckoundia, France Mourey, Jeremie Gaveau<p>As the global population ages, it is crucial to understand sensorimotor compensation mechanisms. These mechanisms are thought to enable older adults to remain in good physical health, but despite important research efforts, they remain essentia...Biomechanics, Sensorimotor ControlMatthieu Boisgontier2024-02-19 10:41:33 View